Now showing 1 - 2 of 2
  • 2020Journal Article
    [["dc.bibliographiccitation.journal","Frontiers in Bioengineering and Biotechnology"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Gerke, Jennifer"],["dc.contributor.author","Frauendorf, Holm"],["dc.contributor.author","Schneider, Dominik"],["dc.contributor.author","Wintergoller, Maxim"],["dc.contributor.author","Hofmeister, Thomas"],["dc.contributor.author","Poehlein, Anja"],["dc.contributor.author","Zebec, Ziga"],["dc.contributor.author","Takano, Eriko"],["dc.contributor.author","Scrutton, Nigel S."],["dc.contributor.author","Braus, Gerhard H."],["dc.date.accessioned","2021-04-14T08:32:40Z"],["dc.date.available","2021-04-14T08:32:40Z"],["dc.date.issued","2020"],["dc.description.abstract","Monoterpenoids, such as the plant metabolite geraniol, are of high industrial relevance since they are important fragrance materials for perfumes, cosmetics, and household products. Chemical synthesis or extraction from plant material for industry purposes are complex, environmentally harmful or expensive and depend on seasonal variations. Heterologous microbial production offers a cost-efficient and sustainable alternative but suffers from low metabolic flux of the precursors and toxicity of the monoterpenoid to the cells. In this study, we evaluated two approaches to counteract both issues by compartmentalizing the biosynthetic enzymes for geraniol to the peroxisomes of Saccharomyces cerevisiae as production sites and by improving the geraniol tolerance of the yeast cells. The combination of both approaches led to an 80% increase in the geraniol titers. In the future, the inclusion of product tolerance and peroxisomal compartmentalization into the general chassis engineering toolbox for monoterpenoids or other host-damaging, industrially relevant metabolites may lead to an efficient, low-cost, and eco-friendly microbial production for industrial purposes."],["dc.identifier.doi","10.3389/fbioe.2020.582052"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83978"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","2296-4185"],["dc.rights","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Production of the Fragrance Geraniol in Peroxisomes of a Product-Tolerant Baker’s Yeast"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","e1005205"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","PLoS Pathogens"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Lin, Chi-Jan"],["dc.contributor.author","Sasse, Christoph"],["dc.contributor.author","Gerke, Jennifer"],["dc.contributor.author","Valerius, Oliver"],["dc.contributor.author","Irmer, Henriette"],["dc.contributor.author","Frauendorf, Holm"],["dc.contributor.author","Heinekamp, Thorsten"],["dc.contributor.author","Strassburger, Maria"],["dc.contributor.author","van Tuan Tran, Van Tuan Tran"],["dc.contributor.author","Herzog, Britta"],["dc.contributor.author","Braus-Stromeyer, Susanna A."],["dc.contributor.author","Braus, Gerhard H."],["dc.date.accessioned","2018-11-07T09:49:12Z"],["dc.date.available","2018-11-07T09:49:12Z"],["dc.date.issued","2015"],["dc.description.abstract","The transcription factor Flo8/Som1 controls filamentous growth in Saccharomyces cerevisiae and virulence in the plant pathogen Magnaporthe oryzae. Flo8/Som1 includes a characteristic N-terminal LUG/LUH-Flo8-single-stranded DNA binding (LUFS) domain and is activated by the cAMP dependent protein kinase A signaling pathway. Heterologous SomA from Aspergillus fumigatus rescued in yeast flo8 mutant strains several phenotypes including adhesion or flocculation in haploids and pseudohyphal growth in diploids, respectively. A. fumigatus SomA acts similarly to yeast Flo8 on the promoter of FLO11 fused with reporter gene (LacZ) in S. cerevisiae. FLO11 expression in yeast requires an activator complex including Flo8 and Mfg1. Furthermore, SomA physically interacts with PtaB, which is related to yeast Mfg1. Loss of the somA gene in A. fumigatus resulted in a slow growth phenotype and a block in asexual development. Only aerial hyphae without further differentiation could be formed. The deletion phenotype was verified by a conditional expression of somA using the inducible Tet-on system. A adherence assay with the conditional somA expression strain indicated that SomA is required for biofilm formation. A ptaB deletion strain showed a similar phenotype supporting that the SomA/PtaB complex controls A. fumigatus biofilm formation. Transcriptional analysis showed that SomA regulates expression of genes for several transcription factors which control conidiation or adhesion of A. fumigatus. Infection assays with fertilized chicken eggs as well as with mice revealed that SomA is required for pathogenicity. These data corroborate a complex control function of SomA acting as a central factor of the transcriptional network, which connects adhesion, spore formation and virulence in the opportunistic human pathogen A. fumigatus."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.1371/journal.ppat.1005205"],["dc.identifier.isi","000368332000007"],["dc.identifier.pmid","26529322"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12564"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35459"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1553-7374"],["dc.relation.issn","1553-7366"],["dc.rights.access","openAccess"],["dc.title","Transcription Factor SomA Is Required for Adhesion, Development and Virulence of the Human Pathogen Aspergillus fumigatus"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS