Options
Reinert, Jochim
Loading...
Preferred name
Reinert, Jochim
Official Name
Reinert, Jochim
Alternative Name
Reinert, J.
Now showing 1 - 2 of 2
2014Journal Article [["dc.bibliographiccitation.firstpage","871"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Journal of Alzheimer s Disease"],["dc.bibliographiccitation.lastpage","881"],["dc.bibliographiccitation.volume","39"],["dc.contributor.author","Reinert, Jochim"],["dc.contributor.author","Martens, Henrik"],["dc.contributor.author","Huettenrauch, Melanie"],["dc.contributor.author","Kolbow, Tekla"],["dc.contributor.author","Lannfelt, Lars"],["dc.contributor.author","Ingelsson, Martin"],["dc.contributor.author","Paetau, Anders"],["dc.contributor.author","Verkkoniemi-Ahola, Auli"],["dc.contributor.author","Bayer, Thomas A."],["dc.contributor.author","Wirths, Oliver"],["dc.date.accessioned","2018-11-07T09:46:32Z"],["dc.date.available","2018-11-07T09:46:32Z"],["dc.date.issued","2014"],["dc.description.abstract","The pathogenesis of Alzheimer's disease (AD) is believed to be closely dependent on deposits of neurotoxic amyloid-beta peptides (A beta), which become abundantly present throughout the central nervous system in advanced stages of the disease. The different A beta peptides existing are generated by subsequent cleavage of the amyloid-beta protein precursor (A beta PP) and may vary in length and differ at their C-terminus. Despite extensive studies on the most prevalent species A beta(40) and A beta(42), A beta peptides with other C-termini such as A beta(38) have not received much attention. In the present study, we used a highly specific and sensitive antibody against A beta(38) to analyze the distribution of this A beta species in cases of sporadic and familial AD, as well as in the brains of a series of established transgenic AD mouse models. We found A beta(38) to be present as vascular deposits in the brains of the majority of sporadic AD cases, whereas it is largely absent in non-demented control cases. A beta(38)-positive extracellular plaques were virtually limited to familial cases. Interestingly we observed A beta(38)-positive plaques not only among familial cases due to A beta PP mutations, but also in cases of familial AD caused by presenilin (PSEN) mutations. Furthermore we demonstrate that A beta(38) deposits in the form of extracellular plaques are common in several AD transgenic mouse models carrying either only A beta PP, or combinations of A beta PP, PSEN1, and tau transgenes."],["dc.identifier.doi","10.3233/JAD-131373"],["dc.identifier.isi","000331842500017"],["dc.identifier.pmid","24305500"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/34892"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Ios Press"],["dc.relation.issn","1875-8908"],["dc.relation.issn","1387-2877"],["dc.title","A beta(38) in the Brains of Patients with Sporadic and Familial Alzheimer's Disease and Transgenic Mouse Models"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article [["dc.bibliographiccitation.artnumber","24"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Acta Neuropathologica Communications"],["dc.bibliographiccitation.lastpage","12"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Reinert, Jochim"],["dc.contributor.author","Richard, Bernhard C."],["dc.contributor.author","Klafki, Hans W."],["dc.contributor.author","Friedrich, Beate"],["dc.contributor.author","Bayer, Thomas A."],["dc.contributor.author","Wiltfang, Jens"],["dc.contributor.author","Kovacs, Gabor G."],["dc.contributor.author","Ingelsson, Martin"],["dc.contributor.author","Lannfelt, Lars"],["dc.contributor.author","Paetau, Anders"],["dc.contributor.author","Bergquist, Jonas"],["dc.contributor.author","Wirths, Oliver"],["dc.date.accessioned","2017-09-07T11:44:29Z"],["dc.date.available","2017-09-07T11:44:29Z"],["dc.date.issued","2016"],["dc.description.abstract","In Alzheimer’s disease (AD) a variety of amyloid β-peptides (Aβ) are deposited in the form of extracellular diffuse and neuritic plaques (NP), as well as within the vasculature. The generation of Aβ from its precursor, the amyloid precursor protein (APP), is a highly complex procedure that involves subsequent proteolysis of APP by β- and γ-secretases. Brain accumulation of Aβ due to impaired Aβ degradation and/or altered ratios between the different Aβ species produced is believed to play a pivotal role in AD pathogenesis. While the presence of Aβ40 and Aβ42 in vascular and parenchymal amyloid have been subject of extensive studies, the deposition of carboxyterminal truncated Aβ peptides in AD has not received comparable attention. In the current study, we for the first time demonstrate the immunohistochemical localization of Aβ37 and Aβ39 in human sporadic AD (SAD). Our study further included the analysis of familial AD (FAD) cases carrying the APP mutations KM670/671NL, E693G and I716F, as well as a case of the PSEN1 ΔExon9 mutation. Aβ37 and Aβ39 were found to be widely distributed within the vasculature in the brains of the majority of studied SAD and FAD cases, the latter also presenting considerable amounts of Aβ37 containing NPs. In addition, both peptides were found to be present in extracellular plaques but only scarce within the vasculature in brains of a variety of transgenic AD mouse models. Taken together, our study indicates the importance of C-terminally truncated Aβ in sporadic and familial AD and raises questions about how these species are generated and regulated."],["dc.identifier.doi","10.1186/s40478-016-0294-7"],["dc.identifier.gro","3151681"],["dc.identifier.pmid","26955942"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12971"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8499"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.relation.issn","2051-5960"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Deposition of C-terminally truncated Aβ species Aβ37 and Aβ39 in Alzheimer’s disease and transgenic mouse models"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC