Options
Guan, Kaomei
Loading...
Preferred name
Guan, Kaomei
Official Name
Guan, Kaomei
Alternative Name
Guan, K.
Guan, Kao Mei
Guan, Kao M.
Guan, K. M.
Guan, Kao
Guan, K.
Guan-Schmidt, Kaomei
Guan-Schmidt, K.
Guan, Kaomei
Guan-Schmidt, Kao Mei
Main Affiliation
Now showing 1 - 2 of 2
2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2164"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","The FASEB journal"],["dc.bibliographiccitation.lastpage","2177"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Elsner, Leslie"],["dc.contributor.author","Novota, Peter"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Streckfuss-Boemeke, Katrin"],["dc.contributor.author","HasenfuĂź, Gerd"],["dc.contributor.author","Jaenisch, Rudolf"],["dc.contributor.author","Engel, Wolfgang"],["dc.date.accessioned","2017-09-07T11:45:57Z"],["dc.date.available","2017-09-07T11:45:57Z"],["dc.date.issued","2010"],["dc.description.abstract","Multipotent adult germ-line stem cells (maGSCs) and induced pluripotent stem cells (iPSCs) could be used to generate autologous cells for therapeutic purposes, which are expected to be tolerated by the recipient. However, effects of the immune system on these cells have not been investigated. We have compared the susceptibility of maGSC lines to IL-2-activated natural killer (NK) cells with embryonic stem cell (ESC) lines, iPSCs, and F9 teratocarcinoma cells. The killing of pluripotent cell lines by syngeneic, allogeneic, and xenogeneic killer cells ranged between 48 and 265% in chromium release assays when compared to YAC-1 cells, which served as highly susceptible reference cells. With the exception of 2 maGSC lines, they expressed ligands for the activating NK receptor NKG2D that belong to the RAE-1 family, and killing could be inhibited by soluble NKG2D, demonstrating a functional role of these molecules. Furthermore, ligands of the activating receptor DNAM-1 were frequently expressed. The susceptibility to NK cells might constitute a common feature of pluripotent cells. It could result in rejection after transplantation, as suggested by a reduced teratoma growth after NK cell activation in vivo, but it might also offer a strategy to deplete contaminating pluripotent cells before grafting of differentiated cells.-Dressel, R., Nolte, J., Elsner, L., Novota, P., Guan, K., Streckfuss-Bomeke, K., Hasenfuss, G., Jaenisch, R., Engel, W. Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J. 24, 2164-2177 (2010). www.fasebj.org"],["dc.identifier.doi","10.1096/fj.09-134957"],["dc.identifier.gro","3142896"],["dc.identifier.isi","000279343600004"],["dc.identifier.pmid","20145206"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6231"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/351"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Federation Amer Soc Exp Biol"],["dc.relation.issn","0892-6638"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2009Journal Article Research Paper [["dc.bibliographiccitation.artnumber","31"],["dc.bibliographiccitation.journal","Biology Direct"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Elsner, Leslie"],["dc.contributor.author","Monecke, Sebastian"],["dc.contributor.author","Nayernia, Karim"],["dc.contributor.author","HasenfuĂź, Gerd"],["dc.contributor.author","Engel, Wolfgang"],["dc.date.accessioned","2017-09-07T11:46:52Z"],["dc.date.available","2017-09-07T11:46:52Z"],["dc.date.issued","2009"],["dc.description.abstract","Background: Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results: We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion: Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. Reviewers: This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter."],["dc.identifier.doi","10.1186/1745-6150-4-31"],["dc.identifier.gro","3143070"],["dc.identifier.isi","000270223400001"],["dc.identifier.pmid","19715575"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/5748"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/543"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1745-6150"],["dc.rights","CC BY 2.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.0"],["dc.title","Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS