Options
Guan, Kaomei
Loading...
Preferred name
Guan, Kaomei
Official Name
Guan, Kaomei
Alternative Name
Guan, K.
Guan, Kao Mei
Guan, Kao M.
Guan, K. M.
Guan, Kao
Guan, K.
Guan-Schmidt, Kaomei
Guan-Schmidt, K.
Guan, Kaomei
Guan-Schmidt, Kao Mei
Main Affiliation
Now showing 1 - 10 of 14
2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","975"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Journal of the American College of Cardiology"],["dc.bibliographiccitation.lastpage","991"],["dc.bibliographiccitation.volume","70"],["dc.contributor.author","Borchert, Thomas"],["dc.contributor.author","Hübscher, Daniela"],["dc.contributor.author","Guessoum, Celina I."],["dc.contributor.author","Lam, Tuan-Dinh D."],["dc.contributor.author","Ghadri, Jelena R."],["dc.contributor.author","Schellinger, Isabel N."],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Liaw, Norman Y."],["dc.contributor.author","Li, Yun"],["dc.contributor.author","Haas, Jan"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Huber, Mia A."],["dc.contributor.author","Cyganek, Lukas"],["dc.contributor.author","Jacobshagen, Claudius"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Raaz, Uwe"],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Meder, Benjamin"],["dc.contributor.author","Wollnik, Bernd"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Lüscher, Thomas F."],["dc.contributor.author","Hasenfuss, Gerd"],["dc.contributor.author","Templin, Christian"],["dc.contributor.author","Streckfuss-Bömeke, Katrin"],["dc.date.accessioned","2018-04-23T11:48:11Z"],["dc.date.available","2018-04-23T11:48:11Z"],["dc.date.issued","2017"],["dc.description.abstract","Background Takotsubo syndrome (TTS) is characterized by an acute left ventricular dysfunction and is associated with life-threating complications in the acute phase. The underlying disease mechanism in TTS is still unknown. A genetic basis has been suggested to be involved in the pathogenesis. Objectives The aims of the study were to establish an in vitro induced pluripotent stem cell (iPSC) model of TTS, to test the hypothesis of altered β-adrenergic signaling in TTS iPSC-cardiomyocytes (CMs), and to explore whether genetic susceptibility underlies the pathophysiology of TTS. Methods Somatic cells of patients with TTS and control subjects were reprogrammed to iPSCs and differentiated into CMs. Three-month-old CMs were subjected to catecholamine stimulation to simulate neurohumoral overstimulation. We investigated β-adrenergic signaling and TTS cardiomyocyte function. Results Enhanced β-adrenergic signaling in TTS-iPSC-CMs under catecholamine-induced stress increased expression of the cardiac stress marker NR4A1; cyclic adenosine monophosphate levels; and cyclic adenosine monophosphate–dependent protein kinase A–mediated hyperphosphorylation of RYR2-S2808, PLN-S16, TNI-S23/24, and Cav1.2-S1928, and leads to a reduced calcium time to transient 50% decay. These cellular catecholamine-dependent responses were mainly mediated by β1-adrenoceptor signaling in TTS. Engineered heart muscles from TTS-iPSC-CMs showed an impaired force of contraction and a higher sensitivity to isoprenaline-stimulated inotropy compared with control subjects. In addition, altered electrical activity and increased lipid accumulation were detected in catecholamine-treated TTS-iPSC-CMs, and were confirmed by differentially expressed lipid transporters CD36 and CPT1C. Furthermore, we uncovered genetic variants in different key regulators of cardiac function. Conclusions Enhanced β-adrenergic signaling and higher sensitivity to catecholamine-induced toxicity were identified as mechanisms associated with the TTS phenotype."],["dc.identifier.doi","10.1016/j.jacc.2017.06.061"],["dc.identifier.gro","3142333"],["dc.identifier.pmid","28818208"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16489"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13468"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/204"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | D01: Erholung aus der Herzinsuffizienz – Einfluss von Fibrose und Transkriptionssignatur"],["dc.relation","SFB 1002 | D02: Neue Mechanismen der genomischen Instabilität bei Herzinsuffizienz"],["dc.relation.issn","0735-1097"],["dc.relation.workinggroup","RG Cyganek (Stem Cell Unit)"],["dc.relation.workinggroup","RG Dressel"],["dc.relation.workinggroup","RG Guan (Application of patient-specific induced pluripotent stem cells in disease modelling)"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Wollnik"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2014Conference Abstract [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Tissue Antigens"],["dc.bibliographiccitation.volume","84"],["dc.contributor.author","Monecke, Sebastian"],["dc.contributor.author","Hamann, Carina"],["dc.contributor.author","Elsner, Leslie"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Mansouri, Ahmed"],["dc.contributor.author","Dressel, Ralf"],["dc.date.accessioned","2018-11-07T09:38:32Z"],["dc.date.available","2018-11-07T09:38:32Z"],["dc.date.issued","2014"],["dc.format.extent","5"],["dc.identifier.isi","000337546000002"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33083"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.eventlocation","Stockholm, SWEDEN"],["dc.relation.issn","1399-0039"],["dc.relation.issn","0001-2815"],["dc.title","PLURIPOTENT STEM CELLS VARYING IN A SINGLE MINOR HISTOCOMPATIBILITY ANTIGEN ELICIT CELLULAR AND HUMORAL IMMUNE RESPONSES THAT CAN MEDIATE GRAFT REJECTION"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2006Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1199"],["dc.bibliographiccitation.issue","7088"],["dc.bibliographiccitation.journal","Nature"],["dc.bibliographiccitation.lastpage","1203"],["dc.bibliographiccitation.volume","440"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Nayernia, Karim"],["dc.contributor.author","Maier, Lars S."],["dc.contributor.author","Wagner, Stefan"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Lee, Jae Ho"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Wolf, F"],["dc.contributor.author","Li, M. Y."],["dc.contributor.author","Engel, Wolfgang"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.date.accessioned","2017-09-07T11:53:07Z"],["dc.date.available","2017-09-07T11:53:07Z"],["dc.date.issued","2006"],["dc.description.abstract","Embryonic germ cells as well as germline stem cells from neonatal mouse testis are pluripotent and have differentiation potential similar to embryonic stem cells(1,2), suggesting that the germline lineage may retain the ability to generate pluripotent cells. However, until now there has been no evidence for the pluripotency and plasticity of adult spermatogonial stem cells (SSCs), which are responsible for maintaining spermatogenesis throughout life in the male(3). Here we show the isolation of SSCs from adult mouse testis using genetic selection, with a success rate of 27%. These isolated SSCs respond to culture conditions and acquire embryonic stem cell properties. We name these cells multipotent adult germline stem cells (maGSCs). They are able to spontaneously differentiate into derivatives of the three embryonic germ layers in vitro and generate teratomas in immunodeficient mice. When injected into an early blastocyst, SSCs contribute to the development of various organs and show germline transmission. Thus, the capacity to form multipotent cells persists in adult mouse testis. Establishment of human maGSCs from testicular biopsies may allow individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells. Furthermore, these cells may provide new opportunities to study genetic diseases in various cell lineages."],["dc.identifier.doi","10.1038/nature04697"],["dc.identifier.gro","3143702"],["dc.identifier.isi","000237080000047"],["dc.identifier.pmid","16565704"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1245"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0028-0836"],["dc.title","Pluripotency of spermatogonial stem cells from adult mouse testis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2009Conference Abstract [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Human Gene Therapy"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Wolf, F."],["dc.contributor.author","Becker, A."],["dc.contributor.author","Streckfuss-Boemeke, Katrin"],["dc.contributor.author","Huebscher, Daniela"],["dc.contributor.author","Field, Loren J."],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Guan, Kaomei"],["dc.date.accessioned","2018-11-07T11:22:43Z"],["dc.date.available","2018-11-07T11:22:43Z"],["dc.date.issued","2009"],["dc.format.extent","1406"],["dc.identifier.isi","000271441000171"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/56035"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Mary Ann Liebert Inc"],["dc.publisher.place","New rochelle"],["dc.relation.conference","Combined Meeting of the 17th European-Society-of-Gene-and-Cell-Therapy/16th German-Society-for-Gene-Therapy/4th German-Society-for-Stem-Cell-Research"],["dc.relation.eventlocation","Hannover, GERMANY"],["dc.relation.issn","1043-0342"],["dc.title","Characterization and maintenance of adult spermatogonial stem cell culture"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2164"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","The FASEB journal"],["dc.bibliographiccitation.lastpage","2177"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Elsner, Leslie"],["dc.contributor.author","Novota, Peter"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Streckfuss-Boemeke, Katrin"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Jaenisch, Rudolf"],["dc.contributor.author","Engel, Wolfgang"],["dc.date.accessioned","2017-09-07T11:45:57Z"],["dc.date.available","2017-09-07T11:45:57Z"],["dc.date.issued","2010"],["dc.description.abstract","Multipotent adult germ-line stem cells (maGSCs) and induced pluripotent stem cells (iPSCs) could be used to generate autologous cells for therapeutic purposes, which are expected to be tolerated by the recipient. However, effects of the immune system on these cells have not been investigated. We have compared the susceptibility of maGSC lines to IL-2-activated natural killer (NK) cells with embryonic stem cell (ESC) lines, iPSCs, and F9 teratocarcinoma cells. The killing of pluripotent cell lines by syngeneic, allogeneic, and xenogeneic killer cells ranged between 48 and 265% in chromium release assays when compared to YAC-1 cells, which served as highly susceptible reference cells. With the exception of 2 maGSC lines, they expressed ligands for the activating NK receptor NKG2D that belong to the RAE-1 family, and killing could be inhibited by soluble NKG2D, demonstrating a functional role of these molecules. Furthermore, ligands of the activating receptor DNAM-1 were frequently expressed. The susceptibility to NK cells might constitute a common feature of pluripotent cells. It could result in rejection after transplantation, as suggested by a reduced teratoma growth after NK cell activation in vivo, but it might also offer a strategy to deplete contaminating pluripotent cells before grafting of differentiated cells.-Dressel, R., Nolte, J., Elsner, L., Novota, P., Guan, K., Streckfuss-Bomeke, K., Hasenfuss, G., Jaenisch, R., Engel, W. Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J. 24, 2164-2177 (2010). www.fasebj.org"],["dc.identifier.doi","10.1096/fj.09-134957"],["dc.identifier.gro","3142896"],["dc.identifier.isi","000279343600004"],["dc.identifier.pmid","20145206"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6231"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/351"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Federation Amer Soc Exp Biol"],["dc.relation.issn","0892-6638"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Conference Abstract [["dc.bibliographiccitation.firstpage","343"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","HLA"],["dc.bibliographiccitation.lastpage","344"],["dc.bibliographiccitation.volume","89"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Huebscher, Daniela"],["dc.contributor.author","Monecke, Sebastian"],["dc.contributor.author","Elsner, Leslie"],["dc.contributor.author","Borchert, Thomas"],["dc.contributor.author","Cyganek, Lukas"],["dc.contributor.author","Stauske, Michael"],["dc.contributor.author","Hejazi, Maryam"],["dc.contributor.author","Uhrberg, Markus"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Streckfuss-Boemeke, Katrin"],["dc.date.accessioned","2018-11-07T10:23:29Z"],["dc.date.available","2018-11-07T10:23:29Z"],["dc.date.issued","2017"],["dc.identifier.isi","000400973300013"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42464"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley"],["dc.publisher.place","Hoboken"],["dc.relation.issn","2059-2310"],["dc.relation.issn","2059-2302"],["dc.title","HUMAN CARDIOMYOCYTES DERIVED FROM INDUCED PLURIPOTENT STEM CELLS ARE TARGETS FOR ACTIVATED AUTOLOGOUS AND ALLOGENEIC NATURAL KILLER CELLS"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2017Journal Article Research Paper [["dc.bibliographiccitation.artnumber","67"],["dc.bibliographiccitation.journal","Frontiers in Immunology"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Huebscher, Daniela"],["dc.contributor.author","Kaiser, Diana"],["dc.contributor.author","Elsner, Leslie"],["dc.contributor.author","Monecke, Sebastian"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Guan, Kaomei"],["dc.date.accessioned","2018-11-07T10:27:34Z"],["dc.date.available","2018-11-07T10:27:34Z"],["dc.date.issued","2017"],["dc.description.abstract","Transplantation of stem cells represents an upcoming therapy for many degenerative diseases. For clinical use, transplantation of pluripotent stem cell-derived cells should lead to integration of functional grafts without immune rejection or teratoma formation. Our previous studies showed that the risk of teratoma formation is highly influenced by the immune system of the recipients. In this study, we have observed a higher teratoma formation rate when undifferentiated so-called multipotent adult germline stem cells (maGSCs) were transplanted into the heart of T, B, and natural killer (NK) cell-deficient RAG2(-/-)gamma c(-/-) mice than in RAG2(-/-) mice, which still have NK cells. Notably, in both strains, the teratoma formation rate was significantly reduced by the immunosuppressive drug cyclosporine A (CsA). Thus, CsA had a profound effect on teratoma formation independent of its immunosuppressive effects. The transplantation into RAG2(-/-) mice led to an activation of NK cells, which reached the maximum 14 days after transplantation and was not affected by CsA. The in vivo-activated NK cells efficiently killed YAC-1 and also maGSC target cells. This NK cell activation was confirmed in C57BL/6 wild-type mice whether treated with CsA or not. Sham operations in wild-type mice indicated that the inflammatory response to open heart surgery rather than the transplantation of maGSCs activated the NK cell system. An activation of NK cells during the transplantation of stem cell-derived in vitro differentiated grafts might be clinically beneficial by reducing the risk of teratoma formation by residual pluripotent cells."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.3389/fimmu.2017.00067"],["dc.identifier.isi","000393436700001"],["dc.identifier.pmid","28220117"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14269"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43258"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/206"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C05: Bedeutung von zellulären Immunreaktionen für das kardiale Remodeling und die Therapie der Herzinsuffizienz durch Stammzelltransplantation"],["dc.relation.issn","1664-3224"],["dc.relation.workinggroup","RG Dressel"],["dc.relation.workinggroup","RG Guan (Application of patient-specific induced pluripotent stem cells in disease modelling)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The Tumorigenicity of Multipotent Adult Germline Stem Cells Transplanted into the Heart Is Affected by Natural Killer Cells and by Cyclosporine A Independent of Its Immunosuppressive Effects"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2618"],["dc.bibliographiccitation.issue","33"],["dc.bibliographiccitation.journal","European heart journal"],["dc.bibliographiccitation.lastpage","2629"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Streckfuss-Boemeke, Katrin"],["dc.contributor.author","Wolf, Frieder"],["dc.contributor.author","Azizian, Azadeh"],["dc.contributor.author","Stauske, Michael"],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Wagner, Stefan"],["dc.contributor.author","Huebscher, Daniela"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Chen, Simin"],["dc.contributor.author","Jende, Jörg"],["dc.contributor.author","Wulf, Gerald"],["dc.contributor.author","Lorenz, Verena"],["dc.contributor.author","Schoen, Michael P."],["dc.contributor.author","Maier, Lars S."],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Guan, Kaomei"],["dc.date.accessioned","2017-09-07T11:47:10Z"],["dc.date.available","2017-09-07T11:47:10Z"],["dc.date.issued","2013"],["dc.description.abstract","Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca-2 transients and Ca-2 sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell origins are similar. However, MSC-derived hiPSCs revealed a higher cardiac differentiation efficiency than keratinocyte- and fibroblast-derived hiPSCs."],["dc.identifier.doi","10.1093/eurheartj/ehs203"],["dc.identifier.gro","3142288"],["dc.identifier.isi","000324367700013"],["dc.identifier.pmid","22798560"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6620"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/61"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A04: Patienten-spezifische induzierte pluripotente Stammzellen zur funktionellen Untersuchung von Ryanodinrezeptor-Mutationen"],["dc.relation.issn","0195-668X"],["dc.relation.workinggroup","RG Dressel"],["dc.relation.workinggroup","RG Guan (Application of patient-specific induced pluripotent stem cells in disease modelling)"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG L. Maier (Experimentelle Kardiologie)"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2009Conference Abstract [["dc.bibliographiccitation.firstpage","394"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Tissue Antigens"],["dc.bibliographiccitation.lastpage","395"],["dc.bibliographiccitation.volume","73"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Elsner, Leslie"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Engel, Wolfgang"],["dc.date.accessioned","2018-11-07T08:30:35Z"],["dc.date.available","2018-11-07T08:30:35Z"],["dc.date.issued","2009"],["dc.identifier.isi","000266032200026"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/16928"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell Publishing, Inc"],["dc.publisher.place","Malden"],["dc.relation.eventlocation","Ulm, GERMANY"],["dc.relation.issn","0001-2815"],["dc.title","Multipotent adult germline stem cells and embryonic stem cells are targets for cytotoxic T lymphocytes"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2009Journal Article Research Paper [["dc.bibliographiccitation.artnumber","31"],["dc.bibliographiccitation.journal","Biology Direct"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Dressel, Ralf"],["dc.contributor.author","Guan, Kaomei"],["dc.contributor.author","Nolte, Jessica"],["dc.contributor.author","Elsner, Leslie"],["dc.contributor.author","Monecke, Sebastian"],["dc.contributor.author","Nayernia, Karim"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Engel, Wolfgang"],["dc.date.accessioned","2017-09-07T11:46:52Z"],["dc.date.available","2017-09-07T11:46:52Z"],["dc.date.issued","2009"],["dc.description.abstract","Background: Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results: We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion: Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. Reviewers: This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter."],["dc.identifier.doi","10.1186/1745-6150-4-31"],["dc.identifier.gro","3143070"],["dc.identifier.isi","000270223400001"],["dc.identifier.pmid","19715575"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/5748"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/543"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1745-6150"],["dc.rights","CC BY 2.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.0"],["dc.title","Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS