Options
Dennerlein, Sven
Loading...
Preferred name
Dennerlein, Sven
Official Name
Dennerlein, Sven
Alternative Name
Dennerlein, S.
Main Affiliation
Now showing 1 - 6 of 6
2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","323"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta"],["dc.bibliographiccitation.lastpage","333"],["dc.bibliographiccitation.volume","1865"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-01-09T14:12:01Z"],["dc.date.available","2018-01-09T14:12:01Z"],["dc.date.issued","2018"],["dc.description.abstract","The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation."],["dc.identifier.doi","10.1016/j.bbamcr.2017.11.010"],["dc.identifier.pmid","29154948"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15209"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11600"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/16"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nd/4.0"],["dc.title","The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","471"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","310"],["dc.bibliographiccitation.volume","167"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Wang, Cong"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dennerlein, Sven"],["dc.date.accessioned","2017-09-07T11:44:33Z"],["dc.date.available","2017-09-07T11:44:33Z"],["dc.date.issued","2016"],["dc.description.abstract","Mitochondrial ribosomes translate membrane integral core subunits of the oxidative phosphorylation system encoded by mtDNA. These translation products associate with nuclear-encoded, imported proteins to form enzyme complexes that produce ATP. Here, we show that human mitochondrial ribosomes display translational plasticity to cope with the supply of imported nuclear-encoded subunits. Ribosomes expressing mitochondrial-encoded COX1 mRNA selectively engage with cytochrome c oxidase assembly factors in the inner membrane. Assembly defects of the cytochrome c oxidase arrest mitochondrial translation in a ribosome nascent chain complex with a partially membrane-inserted COX1 translation product. This complex represents a primed state of the translation product that can be retrieved for assembly. These findings establish a mammalian translational plasticity pathway in mitochondria that enables adaptation of mitochondrial protein synthesis to the influx of nuclear-encoded subunits."],["dc.identifier.doi","10.1016/j.cell.2016.09.003"],["dc.identifier.gro","3141603"],["dc.identifier.isi","000386343100022"],["dc.identifier.pmid","27693358"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13996"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/124"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1097-4172"],["dc.relation.issn","0092-8674"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article [["dc.bibliographiccitation.firstpage","2782"],["dc.bibliographiccitation.issue","22"],["dc.bibliographiccitation.journal","Molecular and Cellular Biology"],["dc.bibliographiccitation.lastpage","2793"],["dc.bibliographiccitation.volume","36"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dennerlein, Sven"],["dc.date.accessioned","2021-06-01T10:47:35Z"],["dc.date.available","2021-06-01T10:47:35Z"],["dc.date.issued","2016"],["dc.description.abstract","The three conserved core subunits of the cytochrome c oxidase are encoded by mitochondria in close to all eukaryotes. The Cox2 subunit spans the inner membrane twice, exposing the N and C termini to the intermembrane space. For this, the N terminus is exported cotranslationally by Oxa1 and subsequently undergoes proteolytic maturation in Saccharomyces cerevisiae . Little is known about the translocation of the C terminus, but Cox18 has been identified to be a critical protein in this process. Here we find that the scaffold protein Cox20, which promotes processing of Cox2, is in complex with the ribosome receptor Mba1 and translating mitochondrial ribosomes in a Cox2-dependent manner. The Mba1-Cox20 complex accumulates when export of the C terminus of Cox2 is blocked by the loss of the Cox18 protein. While Cox20 engages with Cox18, Mba1 is no longer present at this stage. Our analyses indicate that Cox20 associates with nascent Cox2 and Mba1 to promote Cox2 maturation cotranslationally. We suggest that Mba1 stabilizes the Cox20-ribosome complex and supports the handover of Cox2 to the Cox18 tail export machinery."],["dc.identifier.doi","10.1128/MCB.00361-16"],["dc.identifier.gro","3145082"],["dc.identifier.pmid","27550809"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13997"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85651"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","1098-5549"],["dc.relation.issn","0270-7306"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Ribosome-Associated Mba1 Escorts Cox2 from Insertion Machinery to Maturing Assembly Intermediates"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1644"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","1655"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Hellwig, Christin"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:32Z"],["dc.date.available","2017-09-07T11:43:32Z"],["dc.date.issued","2015"],["dc.description.abstract","Cytochrome c oxidase, the terminal enzyme of the respiratory chain, is assembled from mitochondria- and nuclear-encoded subunits. The MITRAC complex represents the central assembly intermediate during this process as it receives imported subunits and regulates mitochondrial translation of COX1 mRNA. The molecular processes that promote and regulate the progression of assembly downstream of MITRAC are still unknown. Here, we identify MITRAC7 as a constituent of a late form of MITRAC and as a COX1-specific chaperone. MITRAC7 is required for cytochrome c oxidase biogenesis. Surprisingly, loss of MITRAC7 or an increase in its amount causes selective cytochrome c oxidase deficiency in human cells. We demonstrate that increased MITRAC7 levels stabilize and trap COX1 in MITRAC, blocking progression in the assembly process. In contrast, MITRAC7 deficiency leads to turnover of newly synthesized COX1. Accordingly, MITRAC7 affects the biogenesis pathway by stabilizing newly synthesized COX1 in assembly intermediates, concomitantly preventing turnover."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.1016/j.celrep.2015.08.009"],["dc.identifier.gro","3141828"],["dc.identifier.isi","000360965500013"],["dc.identifier.pmid","26321642"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12126"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1523"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2211-1247"],["dc.rights","CC BY-NC-SA 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/4.0"],["dc.title","MITRAC7 Acts as a COX1-Specific Chaperone and Reveals a Checkpoint during Cytochrome c Oxidase Assembly"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article Research Paper [["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Poerschke, Sabine"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Wang, Cong"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Sattmann, Johannes"],["dc.contributor.author","Bauermeister, Diana"],["dc.contributor.author","Hanitsch, Elisa"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Langer, Thomas"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2022-02-01T10:31:53Z"],["dc.date.available","2022-02-01T10:31:53Z"],["dc.date.issued","2021"],["dc.description.abstract","Human mitochondria express a genome that encodes thirteen core subunits of the oxidative phosphorylation system (OXPHOS). These proteins insert into the inner membrane co-translationally. Therefore, mitochondrial ribosomes engage with the OXA1L-insertase and membrane-associated proteins, which support membrane insertion of translation products and early assembly steps into OXPHOS complexes. To identify ribosome-associated biogenesis factors for the OXPHOS system, we purified ribosomes and associated proteins from mitochondria. We identified TMEM223 as a ribosome-associated protein involved in complex IV biogenesis. TMEM223 stimulates the translation of COX1 mRNA and is a constituent of early COX1 assembly intermediates. Moreover, we show that SMIM4 together with C12ORF73 interacts with newly synthesized cytochrome b to support initial steps of complex III biogenesis in complex with UQCC1 and UQCC2. Our analyses define the interactome of the human mitochondrial ribosome and reveal novel assembly factors for complex III and IV biogenesis that link early assembly stages to the translation machinery."],["dc.identifier.doi","10.7554/eLife.68213"],["dc.identifier.pmid","34969438"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/98968"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/384"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/166"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/7"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-517"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | P04: Analyse der räumlichen Organisation der OXPHOS Assemblierung in Säugerzellen"],["dc.relation.eissn","2050-084X"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Richter-Dennerlein (Mitoribosome Assembly)"],["dc.relation.workinggroup","RG Langer (Mitochondrial Proteostasis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Defining the interactome of the human mitochondrial ribosome identifies SMIM4 and TMEM223 as respiratory chain assembly factors"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article [["dc.bibliographiccitation.firstpage","201"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Autophagy"],["dc.bibliographiccitation.lastpage","211"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Thumm, Michael"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dudek, Jan"],["dc.date.accessioned","2017-09-07T11:53:21Z"],["dc.date.available","2017-09-07T11:53:21Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1080/15548627.2016.1254852"],["dc.identifier.gro","3145079"],["dc.identifier.pmid","27846363"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2775"],["dc.notes.intern","Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","1554-8627"],["dc.subject","E3 ubiquitin ligase; PARK2; PINK1; Parkin; Parkinson disease; autophagy; mitochondria; mitophagy; phospho-ubiquitin"],["dc.title","Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI PMID PMC