Now showing 1 - 6 of 6
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","323"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta"],["dc.bibliographiccitation.lastpage","333"],["dc.bibliographiccitation.volume","1865"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2018-01-09T14:12:01Z"],["dc.date.available","2018-01-09T14:12:01Z"],["dc.date.issued","2018"],["dc.description.abstract","The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation."],["dc.identifier.doi","10.1016/j.bbamcr.2017.11.010"],["dc.identifier.pmid","29154948"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15209"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11600"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/16"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nd/4.0"],["dc.title","The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","471"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","310"],["dc.bibliographiccitation.volume","167"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Wang, Cong"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dennerlein, Sven"],["dc.date.accessioned","2017-09-07T11:44:33Z"],["dc.date.available","2017-09-07T11:44:33Z"],["dc.date.issued","2016"],["dc.description.abstract","Mitochondrial ribosomes translate membrane integral core subunits of the oxidative phosphorylation system encoded by mtDNA. These translation products associate with nuclear-encoded, imported proteins to form enzyme complexes that produce ATP. Here, we show that human mitochondrial ribosomes display translational plasticity to cope with the supply of imported nuclear-encoded subunits. Ribosomes expressing mitochondrial-encoded COX1 mRNA selectively engage with cytochrome c oxidase assembly factors in the inner membrane. Assembly defects of the cytochrome c oxidase arrest mitochondrial translation in a ribosome nascent chain complex with a partially membrane-inserted COX1 translation product. This complex represents a primed state of the translation product that can be retrieved for assembly. These findings establish a mammalian translational plasticity pathway in mitochondria that enables adaptation of mitochondrial protein synthesis to the influx of nuclear-encoded subunits."],["dc.identifier.doi","10.1016/j.cell.2016.09.003"],["dc.identifier.gro","3141603"],["dc.identifier.isi","000386343100022"],["dc.identifier.pmid","27693358"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13996"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/124"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1097-4172"],["dc.relation.issn","0092-8674"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","2782"],["dc.bibliographiccitation.issue","22"],["dc.bibliographiccitation.journal","Molecular and Cellular Biology"],["dc.bibliographiccitation.lastpage","2793"],["dc.bibliographiccitation.volume","36"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dennerlein, Sven"],["dc.date.accessioned","2021-06-01T10:47:35Z"],["dc.date.available","2021-06-01T10:47:35Z"],["dc.date.issued","2016"],["dc.description.abstract","The three conserved core subunits of the cytochrome c oxidase are encoded by mitochondria in close to all eukaryotes. The Cox2 subunit spans the inner membrane twice, exposing the N and C termini to the intermembrane space. For this, the N terminus is exported cotranslationally by Oxa1 and subsequently undergoes proteolytic maturation in Saccharomyces cerevisiae . Little is known about the translocation of the C terminus, but Cox18 has been identified to be a critical protein in this process. Here we find that the scaffold protein Cox20, which promotes processing of Cox2, is in complex with the ribosome receptor Mba1 and translating mitochondrial ribosomes in a Cox2-dependent manner. The Mba1-Cox20 complex accumulates when export of the C terminus of Cox2 is blocked by the loss of the Cox18 protein. While Cox20 engages with Cox18, Mba1 is no longer present at this stage. Our analyses indicate that Cox20 associates with nascent Cox2 and Mba1 to promote Cox2 maturation cotranslationally. We suggest that Mba1 stabilizes the Cox20-ribosome complex and supports the handover of Cox2 to the Cox18 tail export machinery."],["dc.identifier.doi","10.1128/MCB.00361-16"],["dc.identifier.gro","3145082"],["dc.identifier.pmid","27550809"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13997"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85651"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","1098-5549"],["dc.relation.issn","0270-7306"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Ribosome-Associated Mba1 Escorts Cox2 from Insertion Machinery to Maturing Assembly Intermediates"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1644"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","1655"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Hellwig, Christin"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:32Z"],["dc.date.available","2017-09-07T11:43:32Z"],["dc.date.issued","2015"],["dc.description.abstract","Cytochrome c oxidase, the terminal enzyme of the respiratory chain, is assembled from mitochondria- and nuclear-encoded subunits. The MITRAC complex represents the central assembly intermediate during this process as it receives imported subunits and regulates mitochondrial translation of COX1 mRNA. The molecular processes that promote and regulate the progression of assembly downstream of MITRAC are still unknown. Here, we identify MITRAC7 as a constituent of a late form of MITRAC and as a COX1-specific chaperone. MITRAC7 is required for cytochrome c oxidase biogenesis. Surprisingly, loss of MITRAC7 or an increase in its amount causes selective cytochrome c oxidase deficiency in human cells. We demonstrate that increased MITRAC7 levels stabilize and trap COX1 in MITRAC, blocking progression in the assembly process. In contrast, MITRAC7 deficiency leads to turnover of newly synthesized COX1. Accordingly, MITRAC7 affects the biogenesis pathway by stabilizing newly synthesized COX1 in assembly intermediates, concomitantly preventing turnover."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.1016/j.celrep.2015.08.009"],["dc.identifier.gro","3141828"],["dc.identifier.isi","000360965500013"],["dc.identifier.pmid","26321642"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12126"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1523"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2211-1247"],["dc.rights","CC BY-NC-SA 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/4.0"],["dc.title","MITRAC7 Acts as a COX1-Specific Chaperone and Reveals a Checkpoint during Cytochrome c Oxidase Assembly"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","201"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Autophagy"],["dc.bibliographiccitation.lastpage","211"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Thumm, Michael"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dudek, Jan"],["dc.date.accessioned","2017-09-07T11:53:21Z"],["dc.date.available","2017-09-07T11:53:21Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1080/15548627.2016.1254852"],["dc.identifier.gro","3145079"],["dc.identifier.pmid","27846363"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2775"],["dc.notes.intern","Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","1554-8627"],["dc.subject","E3 ubiquitin ligase; PARK2; PINK1; Parkin; Parkinson disease; autophagy; mitochondria; mitophagy; phospho-ubiquitin"],["dc.title","Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1528"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","1541"],["dc.bibliographiccitation.volume","151"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Wiese, Heike"],["dc.contributor.author","Reinhold, Robert"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Sasarman, Florin"],["dc.contributor.author","Weraarpachai, Woranontee"],["dc.contributor.author","Shoubridge, Eric A."],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:48:20Z"],["dc.date.available","2017-09-07T11:48:20Z"],["dc.date.issued","2012"],["dc.description.abstract","Mitochondrial respiratory-chain complexes assemble from subunits of dual genetic origin assisted by specialized assembly factors. Whereas core subunits are translated on mitochondrial ribosomes, others are imported after cytosolic translation. How imported subunits are ushered to assembly intermediates containing mitochondria-encoded subunits is unresolved. Here, we report a comprehensive dissection of early cytochrome c oxidase assembly intermediates containing proteins required for normal mitochondrial translation and reveal assembly factors promoting biogenesis of human respiratory-chain complexes. We find that TIM21, a subunit of the inner-membrane presequence translocase, is also present in the major assembly intermediates containing newly mitochondria-synthesized and imported respiratory-chain subunits, which we term MITRAC complexes. Human TIM21 is dispensable for protein import but required for integration of early-assembling, presequence-containing subunits into respiratory-chain intermediates. We establish an unexpected molecular link between the TIM23 transport machinery and assembly of respiratory-chain complexes that regulate mitochondrial protein synthesis in response to their assembly state."],["dc.identifier.doi","10.1016/j.cell.2012.11.053"],["dc.identifier.gro","3142426"],["dc.identifier.isi","000312890300017"],["dc.identifier.pmid","23260140"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8152"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0092-8674"],["dc.title","MITRAC Links Mitochondrial Protein Translocation to Respiratory-Chain Assembly and Translational Regulation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS