Now showing 1 - 3 of 3
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.contributor.author","Kabinger, Florian"],["dc.contributor.author","Stiller, Carina"],["dc.contributor.author","Schmitzová, Jana"],["dc.contributor.author","Dienemann, C."],["dc.contributor.author","Kokic, Goran"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-09-01T06:42:22Z"],["dc.date.available","2021-09-01T06:42:22Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β- d - N 4 -hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp–RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir."],["dc.identifier.doi","10.1038/s41594-021-00651-0"],["dc.identifier.pii","651"],["dc.identifier.pmid","34381216"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89038"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/381"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/171"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/28"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","1545-9985"],["dc.relation.issn","1545-9993"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","279"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Kokic, Goran"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Tegunov, Dimitry"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Seitz, Florian"],["dc.contributor.author","Schmitzova, Jana"],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Siewert, Aaron"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-08-12T07:44:55Z"],["dc.date.available","2021-08-12T07:44:55Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Remdesivir is the only FDA-approved drug for the treatment of COVID-19 patients. The active form of remdesivir acts as a nucleoside analog and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-2. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls. Here we use synthetic RNA chemistry, biochemistry and cryo-electron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3ʹ-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3ʹ-nucleotide of the RNA product is matched and located with the template base in the active center, and this may impair proofreading by the viral 3ʹ-exonuclease. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication."],["dc.identifier.doi","10.1038/s41467-020-20542-0"],["dc.identifier.pii","20542"],["dc.identifier.pmid","33436624"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/88330"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/113"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/17"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-448"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","Mechanism of SARS-CoV-2 polymerase stalling by remdesivir"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","999"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Communications Biology"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Jochheim, Florian A."],["dc.contributor.author","Tegunov, Dimitry"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Schmitzová, Jana"],["dc.contributor.author","Kokic, Goran"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-10-01T09:57:46Z"],["dc.date.available","2021-10-01T09:57:46Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract The coronavirus SARS-CoV-2 uses an RNA-dependent RNA polymerase (RdRp) to replicate and transcribe its genome. Previous structures of the RdRp revealed a monomeric enzyme composed of the catalytic subunit nsp12, two copies of subunit nsp8, and one copy of subunit nsp7. Here we report an alternative, dimeric form of the enzyme and resolve its structure at 5.5 Å resolution. In this structure, the two RdRps contain only one copy of nsp8 each and dimerize via their nsp7 subunits to adopt an antiparallel arrangement. We speculate that the RdRp dimer facilitates template switching during production of sub-genomic RNAs."],["dc.identifier.doi","10.1038/s42003-021-02529-9"],["dc.identifier.pii","2529"],["dc.identifier.pmid","34429502"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89909"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/334"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/153"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/10"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","2399-3642"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","The structure of a dimeric form of SARS-CoV-2 polymerase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC