Options
Blomer, Valentin
Loading...
Preferred name
Blomer, Valentin
Official Name
Blomer, Valentin
Alternative Name
Blomer, V.
Main Affiliation
Now showing 1 - 5 of 5
2007Journal Article [["dc.bibliographiccitation.firstpage","61"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Forum Mathematicum"],["dc.bibliographiccitation.lastpage","105"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Michel, Philippe"],["dc.contributor.author","Mao, Z."],["dc.contributor.author","Harcos, Gergely"],["dc.date.accessioned","2018-11-07T11:06:35Z"],["dc.date.available","2018-11-07T11:06:35Z"],["dc.date.issued","2007"],["dc.description.abstract","Let g be a cuspidal newform (holomorphic or Maass) of arbitrary level and nebentypus, X a primitive character of conductor q, and s a point on the critical line Rs = 1/2. It is proved that L(g circle times chi, s) << epsilon,g,s q(1/2-(1/8)(1-20)+epsilon), where epsilon > 0 is arbitrary and theta = 7/64 is the current known approximation towards the RamannJan-Petersson conjecture (which would allow theta = 0); moreover, the dependence on s and all the parameters of g is polynomial. This result is an analog of Burgess' classical subconvex bound for Dirichlet L-functions. In Appendix 2 the above result is combined with a theorem of Waldspurger and the adelic calculations of Baruch-Mao to yield an improved uniform upper bound for the Fourier coefficients of holomorphic half-integral weight cusp forms."],["dc.identifier.doi","10.1515/forum.2007.003"],["dc.identifier.gro","3145989"],["dc.identifier.isi","000244935800003"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/52351"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Walter De Gruyter & Co"],["dc.relation.issn","0933-7741"],["dc.title","A burgess-like subconvex bound for twisted L-functions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2017Book Chapter [["dc.bibliographiccitation.firstpage","18"],["dc.bibliographiccitation.lastpage","29"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Fouvry, Étienne"],["dc.contributor.author","Kowalski, Emmanuel"],["dc.contributor.author","Michel, Philippe"],["dc.contributor.author","Milićević, Djordje"],["dc.contributor.editor","Sergeev, Armen"],["dc.date.accessioned","2020-12-10T18:37:09Z"],["dc.date.available","2020-12-10T18:37:09Z"],["dc.date.issued","2017"],["dc.description.abstract","We revisit a recent bound of I. Shparlinski and T. P. Zhang on bilinear forms with Kloosterman sums, and prove an extension for correlation sums of Kloosterman sums against Fourier coefficients of modular forms. We use these bounds to improve on earlier results on sums of Kloosterman sums along the primes and on the error term of the fourth moment of Dirichlet ehBfunctions."],["dc.identifier.arxiv","1604.07664"],["dc.identifier.doi","10.1134/S0081543817010023"],["dc.identifier.gro","3145825"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76860"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Springer"],["dc.relation.ispartof","Proceedings of the Steklov Institute of Mathematic"],["dc.title","Some applications of smooth bilinear forms with Kloosterman sums"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","707"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","American Journal of Mathematics"],["dc.bibliographiccitation.lastpage","768"],["dc.bibliographiccitation.volume","139"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Fouvry, Étienne"],["dc.contributor.author","Kowalski, Emmanuel"],["dc.contributor.author","Michel, Philippe"],["dc.contributor.author","Milićević, Djordje"],["dc.date.accessioned","2020-12-10T18:41:58Z"],["dc.date.available","2020-12-10T18:41:58Z"],["dc.date.issued","2017"],["dc.description.abstract","We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convolution sums with differences ranging over multiples of q, and we use the theory of Deligne and Katz to prove new bounds on bilinear forms in Kloosterman sums with power savings when both variables are near the square root of q. When at least one of the forms f and g is non-cuspidal, we obtain an asymptotic formula for the mixed second moment of twisted L-functions with a power saving error term. In particular, when both are non-cuspidal, this gives a significant improvement on M. Young's asymptotic evaluation of the fourth moment of Dirichlet L-functions. In the general case, the asymptotic formula with a power saving is proved under a conjectural estimate for certain bilinear forms in Kloosterman sums."],["dc.identifier.doi","10.1353/ajm.2017.0019"],["dc.identifier.eissn","1080-6377"],["dc.identifier.isi","000401050400005"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77754"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Johns Hopkins Univ Press"],["dc.relation.issn","1080-6377"],["dc.relation.issn","0002-9327"],["dc.title","On moments of twisted L-functions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2008Journal Article [["dc.bibliographiccitation.firstpage","697"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Annales Scientifiques de l’École Normale Supérieure"],["dc.bibliographiccitation.lastpage","740"],["dc.bibliographiccitation.volume","40"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Harcos, Gergely"],["dc.contributor.author","Michel, Philippe"],["dc.date.accessioned","2017-09-07T11:51:02Z"],["dc.date.available","2017-09-07T11:51:02Z"],["dc.date.issued","2008"],["dc.identifier.doi","10.1016/j.ansens.2007.05.003"],["dc.identifier.gro","3145990"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3731"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.relation.issn","0012-9593"],["dc.title","Bounds for modular L-functions in the level aspect"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2011Journal Article [["dc.bibliographiccitation.journal","International Mathematics Research Notices"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Michel, Philippe"],["dc.date.accessioned","2017-09-07T11:51:03Z"],["dc.date.available","2017-09-07T11:51:03Z"],["dc.date.issued","2011"],["dc.identifier.doi","10.1093/imrn/rnq280"],["dc.identifier.gro","3146005"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3746"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Oxford University Press (OUP)"],["dc.relation.issn","1073-7928"],["dc.title","Sup-norms of Eigenfunctions on Arithmetic Ellipsoids"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI