Options
Blomer, Valentin
Loading...
Preferred name
Blomer, Valentin
Official Name
Blomer, Valentin
Alternative Name
Blomer, V.
Main Affiliation
Now showing 1 - 6 of 6
2017Journal Article [["dc.bibliographiccitation.firstpage","561"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Annales scientifiques de l'École normale supérieure"],["dc.bibliographiccitation.lastpage","605"],["dc.bibliographiccitation.volume","48"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Milićević, Djordje"],["dc.date.accessioned","2017-09-07T11:51:08Z"],["dc.date.available","2017-09-07T11:51:08Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.24033/asens.2252"],["dc.identifier.gro","3146025"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3766"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.issn","0012-9593"],["dc.title","ehBadic analytic twists and strong subconvexity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article [["dc.bibliographiccitation.firstpage","453"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Geometric and Functional Analysis"],["dc.bibliographiccitation.lastpage","516"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Milićević, Djordje"],["dc.date.accessioned","2017-09-07T11:51:06Z"],["dc.date.available","2017-09-07T11:51:06Z"],["dc.date.issued","2015"],["dc.description.abstract","We prove an asymptotic formula with a power saving error term for the (pure or mixed) second moment ∑∗χmodqL(1/2,f1⊗χ)L(1/2,f2⊗χ)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ of central values of L-functions of any two (possibly equal) fixed cusp forms f 1, f 2 twisted by all primitive characters modulo q, valid for all sufficiently factorable q including 99.9 % of all admissible moduli. The two key ingredients are a careful spectral analysis of a potentially highly unbalanced shifted convolution problem in Hecke eigenvalues and a new large sieve type bound for Kloosterman sums where the summation lengths can be below the square-root threshold of the modulus. Applications are given to simultaneous non-vanishing and lower bounds on higher moments of twisted L-functions."],["dc.identifier.doi","10.1007/s00039-015-0318-7"],["dc.identifier.gro","3146022"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3763"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","1016-443X"],["dc.title","The Second Moment of Twisted Modular L-Functions"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2017Book Chapter [["dc.bibliographiccitation.firstpage","18"],["dc.bibliographiccitation.lastpage","29"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Fouvry, Étienne"],["dc.contributor.author","Kowalski, Emmanuel"],["dc.contributor.author","Michel, Philippe"],["dc.contributor.author","Milićević, Djordje"],["dc.contributor.editor","Sergeev, Armen"],["dc.date.accessioned","2020-12-10T18:37:09Z"],["dc.date.available","2020-12-10T18:37:09Z"],["dc.date.issued","2017"],["dc.description.abstract","We revisit a recent bound of I. Shparlinski and T. P. Zhang on bilinear forms with Kloosterman sums, and prove an extension for correlation sums of Kloosterman sums against Fourier coefficients of modular forms. We use these bounds to improve on earlier results on sums of Kloosterman sums along the primes and on the error term of the fourth moment of Dirichlet ehBfunctions."],["dc.identifier.arxiv","1604.07664"],["dc.identifier.doi","10.1134/S0081543817010023"],["dc.identifier.gro","3145825"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76860"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Springer"],["dc.relation.ispartof","Proceedings of the Steklov Institute of Mathematic"],["dc.title","Some applications of smooth bilinear forms with Kloosterman sums"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article [["dc.bibliographiccitation.firstpage","625"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Duke Mathematical Journal"],["dc.bibliographiccitation.lastpage","659"],["dc.bibliographiccitation.volume","165"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Harcos, Gergely"],["dc.contributor.author","Milićević, Djordje"],["dc.date.accessioned","2017-09-07T11:51:07Z"],["dc.date.available","2017-09-07T11:51:07Z"],["dc.date.issued","2015"],["dc.identifier.doi","10.1215/00127094-3166952"],["dc.identifier.gro","3146027"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3769"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Duke University Press"],["dc.relation.issn","0012-7094"],["dc.title","Bounds for eigenforms on arithmetic hyperbolic $ -manifolds"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","707"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","American Journal of Mathematics"],["dc.bibliographiccitation.lastpage","768"],["dc.bibliographiccitation.volume","139"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Fouvry, Étienne"],["dc.contributor.author","Kowalski, Emmanuel"],["dc.contributor.author","Michel, Philippe"],["dc.contributor.author","Milićević, Djordje"],["dc.date.accessioned","2020-12-10T18:41:58Z"],["dc.date.available","2020-12-10T18:41:58Z"],["dc.date.issued","2017"],["dc.description.abstract","We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convolution sums with differences ranging over multiples of q, and we use the theory of Deligne and Katz to prove new bounds on bilinear forms in Kloosterman sums with power savings when both variables are near the square root of q. When at least one of the forms f and g is non-cuspidal, we obtain an asymptotic formula for the mixed second moment of twisted L-functions with a power saving error term. In particular, when both are non-cuspidal, this gives a significant improvement on M. Young's asymptotic evaluation of the fourth moment of Dirichlet L-functions. In the general case, the asymptotic formula with a power saving is proved under a conjectural estimate for certain bilinear forms in Kloosterman sums."],["dc.identifier.doi","10.1353/ajm.2017.0019"],["dc.identifier.eissn","1080-6377"],["dc.identifier.isi","000401050400005"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77754"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Johns Hopkins Univ Press"],["dc.relation.issn","1080-6377"],["dc.relation.issn","0002-9327"],["dc.title","On moments of twisted L-functions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2015Journal Article [["dc.bibliographiccitation.firstpage","51"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of the European Mathematical Society"],["dc.bibliographiccitation.lastpage","69"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Milićević, Djordje"],["dc.date.accessioned","2017-09-07T11:51:06Z"],["dc.date.available","2017-09-07T11:51:06Z"],["dc.date.issued","2015"],["dc.description.abstract","We prove upper bounds for sums of Kloosterman sums against general arithmetic weight functions. In particular, we obtain power cancellation in sums of Kloosterman sums over arithmetic progressions, which is of square-root strength in any xed primitive congruence class up to bounds towards the Ramanujan conjecture."],["dc.identifier.doi","10.4171/jems/498"],["dc.identifier.gro","3146021"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3762"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","1435-9855"],["dc.title","Kloosterman sums in residue classes"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI