Options
Blomer, Valentin
Loading...
Preferred name
Blomer, Valentin
Official Name
Blomer, Valentin
Alternative Name
Blomer, V.
Main Affiliation
Now showing 1 - 9 of 9
2005Journal Article [["dc.bibliographiccitation.firstpage","507"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Bulletin of the London Mathematical Society"],["dc.bibliographiccitation.lastpage","513"],["dc.bibliographiccitation.volume","37"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Brüdern, Jörg"],["dc.date.accessioned","2017-09-07T11:51:19Z"],["dc.date.available","2017-09-07T11:51:19Z"],["dc.date.issued","2005"],["dc.description.abstract","As an application of the vector sieve and uniform estimates on the Fourier coefficients of cusp forms of half‐integral weight, it is shown that any sufficiently large number n ≡ 3 (mod 24) with 5 ∤ n is expressible as a sum of three squares of integers having at most 521 prime factors."],["dc.identifier.doi","10.1112/S0024609305004480"],["dc.identifier.gro","3146074"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3817"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0024-6093"],["dc.title","A three squares theorem with almost primes"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2012Book Chapter [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.lastpage","15"],["dc.bibliographiccitation.seriesnr","9"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Brüdern, Jörg"],["dc.contributor.editor","Blomer, Valentin"],["dc.contributor.editor","Mihailescu, Preda"],["dc.date.accessioned","2017-09-07T11:51:15Z"],["dc.date.available","2017-09-07T11:51:15Z"],["dc.date.issued","2012"],["dc.identifier.gro","3146047"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3791"],["dc.language.iso","en"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Springer"],["dc.publisher.place","New York, NY"],["dc.relation.crisseries","Springer Proceedings in Mathematics"],["dc.relation.isbn","978-1-4614-1218-2"],["dc.relation.ispartof","Contributions in analytic and algebraic number theory"],["dc.relation.ispartofseries","Springer proceedings in mathematics; 9"],["dc.relation.issn","2190-5614"],["dc.title","The density of rational points on a certain threefold"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details2015Journal Article [["dc.bibliographiccitation.journal","Journal für die reine und angewandte Mathematik (Crelles Journal)"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Bruedern, Joerg"],["dc.date.accessioned","2017-09-07T11:51:07Z"],["dc.date.available","2017-09-07T11:51:07Z"],["dc.date.issued","2015"],["dc.identifier.doi","10.1515/crelle-2015-0037"],["dc.identifier.gro","3146030"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3772"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Walter de Gruyter GmbH"],["dc.relation.issn","0075-4102"],["dc.title","Counting in hyperbolic spikes: The diophantine analysis of multihomogeneous diagonal equations"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2014Journal Article [["dc.bibliographiccitation.firstpage","911"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Proceedings of the London Mathematical Society. Third Series"],["dc.bibliographiccitation.lastpage","964"],["dc.bibliographiccitation.volume","108"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Brüdern, Jörg"],["dc.contributor.author","Salberger, Per"],["dc.date.accessioned","2017-09-07T11:51:09Z"],["dc.date.available","2017-09-07T11:51:09Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.1112/plms/pdt043"],["dc.identifier.gro","3146040"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3782"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0024-6115"],["dc.title","On a certain senary cubic form"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2009Journal Article [["dc.bibliographiccitation.firstpage","283"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","The Quarterly Journal of Mathematics"],["dc.bibliographiccitation.lastpage","290"],["dc.bibliographiccitation.volume","60"],["dc.contributor.author","Blomer, V."],["dc.contributor.author","Brüdern, J."],["dc.date.accessioned","2017-09-07T11:51:18Z"],["dc.date.available","2017-09-07T11:51:18Z"],["dc.date.issued","2009"],["dc.description.abstract","The quadric given by the equations x12 + x22 + x32 = y12 + y22 + y32, x1 + x2 + x3 = y1 + y2 + y3 has almost all its solutions with prime coordinates on the diagonals. This is shown in quantitative form. A similar statement holds for integral solutions whose coordinates can be written as the sum of two squares."],["dc.identifier.doi","10.1093/qmath/han017"],["dc.identifier.gro","3146065"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3808"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0033-5606"],["dc.title","A quadric with arithmetic paucity"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2009Journal Article [["dc.bibliographiccitation.firstpage","1401"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Compositio Mathematica"],["dc.bibliographiccitation.lastpage","1441"],["dc.bibliographiccitation.volume","145"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Brüdern, Jörg"],["dc.contributor.author","Dietmann, Rainer"],["dc.date.accessioned","2017-09-07T11:51:00Z"],["dc.date.available","2017-09-07T11:51:00Z"],["dc.date.issued","2009"],["dc.identifier.doi","10.1112/s0010437x09004254"],["dc.identifier.gro","3145998"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3739"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0010-437X"],["dc.title","Sums of smooth squares"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2010Journal Article [["dc.bibliographiccitation.firstpage","243"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Monatshefte für Mathematik"],["dc.bibliographiccitation.lastpage","256"],["dc.bibliographiccitation.volume","160"],["dc.contributor.author","Blomer, V."],["dc.contributor.author","Brüdern, J."],["dc.date.accessioned","2017-09-07T11:51:17Z"],["dc.date.available","2017-09-07T11:51:17Z"],["dc.date.issued","2010"],["dc.description.abstract","An asymptotic formula is obtained for the number of integer solutions of bounded height on Vinogradov\\’s quadric. Two leading terms are determined, and a strong estimate for the error term is given."],["dc.identifier.doi","10.1007/s00605-008-0085-8"],["dc.identifier.gro","3146059"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3804"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0026-9255"],["dc.title","The number of integer points on Vinogradov's quadric"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2008Journal Article [["dc.bibliographiccitation.firstpage","457"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Bulletin of the London Mathematical Society"],["dc.bibliographiccitation.lastpage","462"],["dc.bibliographiccitation.volume","40"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Bruedern, Joerg"],["dc.date.accessioned","2017-09-07T11:51:02Z"],["dc.date.available","2017-09-07T11:51:02Z"],["dc.date.issued","2008"],["dc.identifier.doi","10.1112/blms/bdn026"],["dc.identifier.gro","3145991"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3732"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Oxford University Press (OUP)"],["dc.relation.issn","0024-6093"],["dc.title","Prime paucity for sums of two squares"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2010Journal Article [["dc.bibliographiccitation.firstpage","231"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Michigan Mathematical Journal"],["dc.bibliographiccitation.lastpage","240"],["dc.bibliographiccitation.volume","59"],["dc.contributor.author","Blomer, Valentin"],["dc.contributor.author","Bruedern, Joerg"],["dc.date.accessioned","2017-09-07T11:51:05Z"],["dc.date.available","2017-09-07T11:51:05Z"],["dc.date.issued","2010"],["dc.identifier.doi","10.1307/mmj/1272376035"],["dc.identifier.gro","3146001"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3741"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Michigan Mathematical Journal"],["dc.relation.issn","0026-2285"],["dc.title","Iterates of Vinogradov's quadric and prime paucity"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI