Options
Scheu, Stefan
Loading...
Preferred name
Scheu, Stefan
Official Name
Scheu, Stefan
Alternative Name
Scheu, S.
Main Affiliation
ORCID
Now showing 1 - 10 of 32
2014Journal Article [["dc.bibliographiccitation.firstpage","1126"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","The ISME Journal"],["dc.bibliographiccitation.lastpage","1134"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Sandmann, Dorothee"],["dc.contributor.author","Maraun, Mark"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2018-11-07T09:40:57Z"],["dc.date.available","2018-11-07T09:40:57Z"],["dc.date.issued","2014"],["dc.description.abstract","We investigated the response of soil microbial communities in tropical ecosystems to increased nutrient deposition, such as predicted by anthropogenic change scenarios. Moderate amounts of nitrogen and phosphorus and their combination were added along an altitudinal transect. We expected microorganisms and microbial grazers (testate amoebae) to significantly respond to nutrient additions with the effect increasing with increasing altitude and with duration of nutrient additions. Further, we expected nutrients to alter grazer-prey interrelationships. Indeed, nutrient additions strongly altered microbial biomass (MB) and community structure as well as the community structure of testate amoebae. The response of microorganisms varied with both altitude and duration of nutrient addition. The results indicate that microorganisms are generally limited by N, but saprotrophic fungi also by P. Also, arbuscular mycorrhizal fungi benefited from N and/or P addition. Parallel to MB, testate amoebae benefited from the addition of N but were detrimentally affected by P, with the addition of P negating the positive effect of N. Our data suggests that testate amoeba communities are predominantly structured by abiotic factors and by antagonistic interactions with other microorganisms, in particular mycorrhizal fungi, rather than by the availability of prey. Overall, the results suggest that the decomposer system of tropical montane rainforests significantly responds to even moderate changes in nutrient inputs with the potential to cause major ramifications of the whole ecosystem including litter decomposition and plant growth."],["dc.description.sponsorship","German Research Foundation (DFG) [FOR 816]"],["dc.identifier.doi","10.1038/ismej.2013.209"],["dc.identifier.isi","000334912000016"],["dc.identifier.pmid","24285360"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12122"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33616"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","1751-7370"],["dc.relation.issn","1751-7362"],["dc.rights","CC BY-NC-SA 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/3.0"],["dc.title","Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","697"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Biology and Fertility of Soils"],["dc.bibliographiccitation.lastpage","705"],["dc.bibliographiccitation.volume","51"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Klarner, Bernhard"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Maraun, Mark"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2018-11-07T09:53:51Z"],["dc.date.available","2018-11-07T09:53:51Z"],["dc.date.issued","2015"],["dc.description.abstract","Focusing on Sumatra, a hotspot of tropical lowland rainforest transformation, we investigated effects of the conversion of rainforests into rubber agroforests (\"jungle rubber\"), intensive rubber, and oil palm plantations on the communities of litter and soil microorganisms and identified factors responsible for these changes. Litter basal respiration, microbial biomass, total bacterial phospholipid fatty acids (PLFAs), and fungal PLFAs did not vary significantly with rainforest conversion. In litter of converted ecosystems, the concentration of certain PLFAs including the Gram-negative bacteria marker PLFA cy17:0 and the Gram-positive bacteria marker PLFA i17:0 was reduced as compared to rainforest, whereas the concentration of the arbuscular mycorrhizal fungi (AMF) marker neutral lipid fatty acid (NLFA) 16:1 omega 5c increased. As indicated by redundancy analysis, litter pH and carbon concentration explained most of the variation in litter microbial community composition. In soil, microbial biomass did not vary significantly with rainforest conversion, whereas basal respiration declined. Total PLFAs and especially that of Gram-negative bacteria decreased, whereas PLFA i17:0 increased with rainforest conversion. The concentration of fungal PLFAs increased with rainforest conversion, whereas NLFA 16:1 omega 5c did not change significantly. Redundancy analysis indicated that soil pH explained most of the variation in soil microbial community composition. Overall, the data suggest that conversion of rainforests into production systems results in more pronounced changes in microbial community composition in soil as compared to litter. In particular, the response of fungi and bacteria was more pronounced in soil, while the response of AMF was more pronounced in litter. Notably, only certain bacterial markers but not those of saprotrophic fungi and AMF were detrimentally affected by rainforest conversion."],["dc.description.sponsorship","German Research Foundation (DFG) [CRC990]"],["dc.identifier.doi","10.1007/s00374-015-1021-4"],["dc.identifier.isi","000359160800006"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36417"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.issn","1432-0789"],["dc.relation.issn","0178-2762"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI WOS2020Journal Article [["dc.bibliographiccitation.artnumber","e01668"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Bulletin of the Ecological Society of America"],["dc.bibliographiccitation.volume","101"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Dupérré, Nadine"],["dc.contributor.author","Jochum, Malte"],["dc.contributor.author","Dreczko, Kerstin"],["dc.contributor.author","Klarner, Bernhard"],["dc.contributor.author","Barnes, Andrew D."],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Rembold, Katja"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Brose, Ulrich"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Harms, Danilo"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2022-10-25T07:22:50Z"],["dc.date.available","2022-10-25T07:22:50Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1002/bes2.1668"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/116488"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B01: Structure, stability and functioning of macro-invertebrate communities in rainforest transformation systems in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.issn","0012-9623"],["dc.relation.issn","2327-6096"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_otherPublications"],["dc.title","Ground Spider Communities Under Tropical Land‐Use Change"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","190"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Protist"],["dc.bibliographiccitation.lastpage","205"],["dc.bibliographiccitation.volume","169"],["dc.contributor.author","Schulz, Garvin"],["dc.contributor.author","Maraun, Mark"],["dc.contributor.author","Völcker, Eckhard"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Krashevska, Valentyna"],["dc.date.accessioned","2020-12-10T15:20:55Z"],["dc.date.available","2020-12-10T15:20:55Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1016/j.protis.2018.02.005"],["dc.identifier.issn","1434-4610"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72858"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Evaluation of Morphological Characteristics to Delineate Taxa of the Genus Trigonopyxis (Amoebozoa, Arcellinida)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","e02957"],["dc.bibliographiccitation.journal","Ecology"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Dupérré, Nadine"],["dc.contributor.author","Jochum, Malte"],["dc.contributor.author","Dreczko, Kerstin"],["dc.contributor.author","Klarner, Bernhard"],["dc.contributor.author","Barnes, Andrew D."],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Rembold, Katja"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Brose, Ulrich"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Harms, Danilo"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2020-01-29T10:54:30Z"],["dc.date.available","2020-01-29T10:54:30Z"],["dc.date.issued","2019"],["dc.description.abstract","Deforestation and land-use change in tropical regions result in habitat loss and extinction of species that are unable to adapt to the conditions in agricultural landscapes. If the associated loss of functional diversity is not compensated by species colonizing the converted habitats, extinctions might be followed by a reduction or loss of ecosystem functions including biological control. To date, little is known on how land-use change in the tropics alters the functional diversity of invertebrate predators and which key environmental factors may mitigate the decline in functional diversity and predation in litter and soil communities. We applied litter sieving and heat extraction to study ground spider communities and assessed structural characteristics of vegetation and parameters of litter in rainforest and agricultural land-use systems (jungle rubber, rubber and oil palm monocultures) in a Southeast Asian hotspot of rainforest conversion: Sumatra, Indonesia. We found that (1) spider density, species richness, functional diversity and community predation (energy flux to spiders) were reduced by 57-98% from rainforest to oil palm monoculture; (2) jungle rubber and rubber monoculture sustained relatively high diversity and predation in ground spiders, but small cryptic spider species strongly declined; (3) high species turnover compensated losses of some functional trait combinations, but did not compensate for the overall loss of functional diversity and predation per unit area; (4) spider diversity was related to habitat structure such as amount of litter, understory density and understory height, while spider predation was better explained by plant diversity. Management practices that increase habitat structural complexity and plant diversity such as mulching, reduced weeding, and intercropping monocultures with other plants may contribute to maintaining functional diversity of and predation services provided by ground invertebrate communities in plantations."],["dc.identifier.doi","10.1002/ecy.2957"],["dc.identifier.pmid","31840252"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62879"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B01: Structure, stability and functioning of macro-invertebrate communities in rainforest transformation systems in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.eissn","1939-9170"],["dc.relation.issn","0012-9658"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Functional losses in ground spider communities due to habitat-structure degradation under tropical land-use change"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","10686"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","Ecology and Evolution"],["dc.bibliographiccitation.lastpage","10708"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Susanti, Winda Ika"],["dc.contributor.author","Bartels, Tamara"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Deharveng, Louis"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Potapov, Anton M."],["dc.date.accessioned","2021-08-12T07:44:50Z"],["dc.date.available","2021-08-12T07:44:50Z"],["dc.date.issued","2021"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1002/ece3.7881"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/88307"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-448"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.eissn","2045-7758"],["dc.relation.issn","2045-7758"],["dc.relation.orgunit","Abteilung Tierökologie"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990-journalarticles"],["dc.subject.gro","sfb990-abs"],["dc.title","Conversion of rainforest into oil palm and rubber plantations affects the functional composition of litter and soil Collembola"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Overview [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Data"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","van den Hoogen, Johan"],["dc.contributor.author","Geisen, Stefan"],["dc.contributor.author","Wall, Diana H."],["dc.contributor.author","Wardle, David A."],["dc.contributor.author","Traunspurger, Walter"],["dc.contributor.author","de Goede, Ron G. M."],["dc.contributor.author","Adams, Byron J."],["dc.contributor.author","Ahmad, Wasim"],["dc.contributor.author","Ferris, Howard"],["dc.contributor.author","Bardgett, Richard D."],["dc.contributor.author","Bonkowski, Michael"],["dc.contributor.author","Campos-Herrera, Raquel"],["dc.contributor.author","Cares, Juvenil E."],["dc.contributor.author","Caruso, Tancredi"],["dc.contributor.author","de Brito Caixeta, Larissa"],["dc.contributor.author","Chen, Xiaoyun"],["dc.contributor.author","Costa, Sofia R."],["dc.contributor.author","Creamer, Rachel"],["dc.contributor.author","da Cunha e Castro, José Mauro"],["dc.contributor.author","Dam, Marie"],["dc.contributor.author","Djigal, Djibril"],["dc.contributor.author","Escuer, Miguel"],["dc.contributor.author","Griffiths, Bryan S."],["dc.contributor.author","Gutiérrez, Carmen"],["dc.contributor.author","Hohberg, Karin"],["dc.contributor.author","Kalinkina, Daria"],["dc.contributor.author","Kardol, Paul"],["dc.contributor.author","Kergunteuil, Alan"],["dc.contributor.author","Korthals, Gerard"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Kudrin, Alexey A."],["dc.contributor.author","Li, Qi"],["dc.contributor.author","Liang, Wenju"],["dc.contributor.author","Magilton, Matthew"],["dc.contributor.author","Marais, Mariette"],["dc.contributor.author","Martín, José Antonio Rodríguez"],["dc.contributor.author","Matveeva, Elizaveta"],["dc.contributor.author","Mayad, El Hassan"],["dc.contributor.author","Mzough, E."],["dc.contributor.author","Mulder, Christian"],["dc.contributor.author","Mullin, Peter"],["dc.contributor.author","Neilson, Roy"],["dc.contributor.author","Nguyen, T. A. Duong"],["dc.contributor.author","Nielsen, Uffe N."],["dc.contributor.author","Okada, Hiroaki"],["dc.contributor.author","Rius, Juan Emilio Palomares"],["dc.contributor.author","Pan, Kaiwen"],["dc.contributor.author","Peneva, Vlada"],["dc.contributor.author","Pellissier, Loïc"],["dc.contributor.author","da Silva, Julio Carlos Pereira"],["dc.contributor.author","Pitteloud, Camille"],["dc.contributor.author","Powers, Thomas O."],["dc.contributor.author","Powers, Kirsten"],["dc.contributor.author","Quist, Casper W."],["dc.contributor.author","Rasmann, Sergio"],["dc.contributor.author","Moreno, Sara Sánchez"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Setälä, Heikki"],["dc.contributor.author","Sushchuk, Anna"],["dc.contributor.author","Tiunov, Alexei V."],["dc.contributor.author","Trap, Jean"],["dc.contributor.author","Vestergård, Mette"],["dc.contributor.author","Villenave, Cecile"],["dc.contributor.author","Waeyenberge, Lieven"],["dc.contributor.author","Wilschut, Rutger A."],["dc.contributor.author","Wright, Daniel G."],["dc.contributor.author","Keith, Aidan M."],["dc.contributor.author","Yang, Jiue-in"],["dc.contributor.author","Schmidt, Olaf"],["dc.contributor.author","Bouharroud, R."],["dc.contributor.author","Ferji, Z."],["dc.contributor.author","van der Putten, Wim H."],["dc.contributor.author","Routh, Devin"],["dc.contributor.author","Crowther, Thomas W."],["dc.date.accessioned","2020-12-10T18:10:06Z"],["dc.date.available","2020-12-10T18:10:06Z"],["dc.date.issued","2020"],["dc.description.abstract","As the most abundant animals on earth, nematodes are a dominant component of the soil community. They play critical roles in regulating biogeochemical cycles and vegetation dynamics within and across landscapes and are an indicator of soil biological activity. Here, we present a comprehensive global dataset of soil nematode abundance and functional group composition. This dataset includes 6,825 georeferenced soil samples from all continents and biomes. For geospatial mapping purposes these samples are aggregated into 1,933 unique 1-km pixels, each of which is linked to 73 global environmental covariate data layers. Altogether, this dataset can help to gain insight into the spatial distribution patterns of soil nematode abundance and community composition, and the environmental drivers shaping these patterns."],["dc.identifier.doi","10.1038/s41597-020-0437-3"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73848"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_reviews"],["dc.title","A global database of soil nematode abundance and functional group composition"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2012Journal Article [["dc.bibliographiccitation.firstpage","603"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","FEMS Microbiology Ecology"],["dc.bibliographiccitation.lastpage","607"],["dc.bibliographiccitation.volume","80"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Maraun, Mark"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2018-11-07T09:10:05Z"],["dc.date.available","2018-11-07T09:10:05Z"],["dc.date.issued","2012"],["dc.description.abstract","Litter quality and diversity are major factors structuring decomposer communities. However, little is known on the relationship between litter quality and the community structure of soil protists in tropical forests. We analyzed the diversity, density, and community structure of a major group of soil protists of tropical montane rainforests, that is, testate amoebae. Litterbags containing pure and mixed litter of two abundant tree species at the study sites (Graffenrieda emarginata and Purdiaea nutans) differing in nitrogen concentrations were exposed in the field for 12 similar to months. The density and diversity of testate amoebae were higher in the nitrogen-rich Graffenrieda litter suggesting that nitrogen functions as an important driving factor for soil protist communities. No additive effects of litter mixing were found, rather density of testate amoebae was reduced in litter mixtures as compared to litterbags with Graffenrieda litter only. However, adding of high-quality litter to low-quality litter markedly improved habitat quality, as evaluated by the increase in diversity and density of testate amoebae. The results suggest that local factors, such as litter quality, function as major forces shaping the structure and density of decomposer microfauna that likely feed back to decomposition processes."],["dc.description.sponsorship","German Research Foundation (DFG) [FOR 816]"],["dc.identifier.doi","10.1111/j.1574-6941.2012.01327.x"],["dc.identifier.isi","000303761900008"],["dc.identifier.pmid","22324854"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/26416"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","0168-6496"],["dc.title","How does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests?"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article [["dc.bibliographiccitation.firstpage","121"],["dc.bibliographiccitation.journal","Soil Biology and Biochemistry"],["dc.bibliographiccitation.lastpage","128"],["dc.bibliographiccitation.volume","77"],["dc.contributor.author","Butenschoen, Olaf"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Maraun, Mark"],["dc.contributor.author","Marian, Franca"],["dc.contributor.author","Sandmann, Dorothee"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2018-11-07T09:34:57Z"],["dc.date.available","2018-11-07T09:34:57Z"],["dc.date.issued","2014"],["dc.description.abstract","In a litterbag study in a tropical montane rainforest in Ecuador we assessed the impact of leaf litter species identity and richness on decomposition. We incubated leaf litter of six native tree species in monocultures and all possible two and four species combinations and analysed mass loss over a period of 24 months. Mass loss in monocultures averaged 30.7% after 6 month and differed significantly between species with variations being closely related to initial concentrations of lignin, Mg and P. At later harvests mass loss in monocultures averaged 54.5% but did not vary among leaf litter species and, unexpectedly, did not increase between 12 and 24 months suggesting that litter converged towards an extremely poor common quality retarding decomposition. After 6 months mass loss of leaf litter species was significantly faster in mixtures than in monocultures, resulting in synergistic non-additive mixture effects on decomposition, whereas at later harvests mass loss of component litter species was more variable and leaf litter mixture effects differed with species richness. Mass loss in the two species mixtures did not deviate from those predicted from monocultures, while we found antagonistic non-additive mixture effects in the four species mixtures. This suggests that litter species shared a poor common quality but different chemistry resulting in negative interactions in chemically diverse litter mixtures at later stages of decomposition. Overall, the results suggest that interspecific variations in diversity and composition of structural and secondary litter compounds rather than concentrations of individual litter compounds per se, control long term leaf litter decomposition in tropical montane rainforests. Plant species diversity thus appears to act as a major driver for decomposition processes in tropical montane rainforest ecosystems, highlighting the need for increasing plant conservation efforts to protect ecosystem functioning of this threatened biodiversity hotspot (C) 2014 Elsevier Ltd. All rights reserved."],["dc.description.sponsorship","German Science Foundation (DFG)"],["dc.identifier.doi","10.1016/j.soilbio.2014.06.019"],["dc.identifier.isi","000341556600014"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/32286"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Pergamon-elsevier Science Ltd"],["dc.relation.issn","0038-0717"],["dc.title","Litter mixture effects on decomposition in tropical montane rainforests vary strongly with time and turn negative at later stages of decay"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","255"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Oecologia"],["dc.bibliographiccitation.lastpage","266"],["dc.bibliographiccitation.volume","187"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Malysheva, Elena"],["dc.contributor.author","Klarner, Bernhard"],["dc.contributor.author","Mazei, Yuri"],["dc.contributor.author","Maraun, Mark"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2020-12-10T14:10:38Z"],["dc.date.available","2020-12-10T14:10:38Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1007/s00442-018-4103-9"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70828"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation","SFB 990 | B | B13: Impact of management intensity and tree enrichment of oil palm plantations on below- and aboveground invertebrates in Sumatra (Indonesia)"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Micro-decomposer communities and decomposition processes in tropical lowlands as affected by land use and litter type"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI