Options
Scheu, Stefan
Loading...
Preferred name
Scheu, Stefan
Official Name
Scheu, Stefan
Alternative Name
Scheu, S.
Main Affiliation
ORCID
Now showing 1 - 10 of 38
2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e11012"],["dc.bibliographiccitation.journal","PeerJ"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Junggebauer, André"],["dc.contributor.author","Hartke, Tamara R."],["dc.contributor.author","Ramos, Daniel"],["dc.contributor.author","Schaefer, Ina"],["dc.contributor.author","Buchori, Damayanti"],["dc.contributor.author","Hidayat, Purnama"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Drescher, Jochen"],["dc.date.accessioned","2021-04-12T09:59:41Z"],["dc.date.available","2021-04-12T09:59:41Z"],["dc.date.issued","2021"],["dc.description.abstract","Rainforest conversion into monoculture plantations results in species loss and community shifts across animal taxa. The effect of such conversion on the role of ecophysiological properties influencing communities, and conversion effects on phylogenetic diversity and community assembly mechanisms, however, are rarely studied in the same context. Here, we compare salticid spider (Araneae: Salticidae) communities between canopies of lowland rainforest, rubber agroforest (\"jungle rubber\") and monoculture plantations of rubber or oil palm, sampled in a replicated plot design in Jambi Province, Sumatra, Indonesia. Overall, we collected 912 salticid spider individuals and sorted them to 70 morphospecies from 21 genera. Salticid richness was highest in jungle rubber, followed by rainforest, oil palm and rubber, but abundance of salticids did not differ between land-use systems. Community composition was similar in jungle rubber and rainforest but different from oil palm and rubber, which in turn were different from each other. The four investigated land-use systems differed in aboveground plant biomass, canopy openness and land use intensity, which explained 12% of the observed variation in canopy salticid communities. Phylogenetic diversity based on ~850 bp 28S rDNA fragments showed similar patterns as richness, that is, highest in jungle rubber, intermediate in rainforest, and lowest in the two monoculture plantations. Additionally, we found evidence for phylogenetic clustering of salticids in oil palm, suggesting that habitat filtering is an important factor shaping salticid spider communities in monoculture plantations. Overall, our study offers a comprehensive insight into the mechanisms shaping communities of arthropod top predators in canopies of tropical forest ecosystems and plantations, combining community ecology, environmental variables and phylogenetics across a land-use gradient in tropical Asia."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.doi","10.7717/peerj.11012"],["dc.identifier.pmid","33717710"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80657"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | Z | Z02: Central Scientific Support Unit"],["dc.relation.issn","2167-8359"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Changes in diversity and community assembly of jumping spiders (Araneae: Salticidae) after rainforest conversion to rubber and oil palm plantations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.journal","Biological Invasions"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Schaefer, Ina"],["dc.contributor.author","Jochum, Malte"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Eisenhauer, Nico"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2021-06-01T09:41:03Z"],["dc.date.available","2021-06-01T09:41:03Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Deforestation, plantation expansion and other human activities in tropical ecosystems are often associated with biological invasions. These processes have been studied for above-ground organisms, but associated changes below the ground have received little attention. We surveyed rainforest and plantation systems in Jambi province, Sumatra, Indonesia, to investigate effects of land-use change on the diversity and abundance of earthworms—a major group of soil-ecosystem engineers that often is associated with human activities. Density and biomass of earthworms increased 4—30-fold in oil palm and rubber monoculture plantations compared to rainforest. Despite much higher abundance, earthworm communities in plantations were less diverse and dominated by the peregrine morphospecies Pontoscolex corethrurus, often recorded as invasive. Considering the high deforestation rate in Indonesia, invasive earthworms are expected to dominate soil communities across the region in the near future, in lieu of native soil biodiversity. Ecologically-friendly management approaches, increasing structural habitat complexity and plant diversity, may foster beneficial effects of invasive earthworms on plant growth while mitigating negative effects on below-ground biodiversity and the functioning of the native soil animal community."],["dc.identifier.doi","10.1007/s10530-021-02539-y"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84805"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B01: Structure, stability and functioning of macro-invertebrate communities in rainforest transformation systems in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B02: Impact of rainforest transformation on phylogenetic and functional diversity of soil prokaryotic communities in Sumatra (Indonesia)"],["dc.relation.eissn","1573-1464"],["dc.relation.issn","1387-3547"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Oil palm and rubber expansion facilitates earthworm invasion in Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","697"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Biology and Fertility of Soils"],["dc.bibliographiccitation.lastpage","705"],["dc.bibliographiccitation.volume","51"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Klarner, Bernhard"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Maraun, Mark"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2018-11-07T09:53:51Z"],["dc.date.available","2018-11-07T09:53:51Z"],["dc.date.issued","2015"],["dc.description.abstract","Focusing on Sumatra, a hotspot of tropical lowland rainforest transformation, we investigated effects of the conversion of rainforests into rubber agroforests (\"jungle rubber\"), intensive rubber, and oil palm plantations on the communities of litter and soil microorganisms and identified factors responsible for these changes. Litter basal respiration, microbial biomass, total bacterial phospholipid fatty acids (PLFAs), and fungal PLFAs did not vary significantly with rainforest conversion. In litter of converted ecosystems, the concentration of certain PLFAs including the Gram-negative bacteria marker PLFA cy17:0 and the Gram-positive bacteria marker PLFA i17:0 was reduced as compared to rainforest, whereas the concentration of the arbuscular mycorrhizal fungi (AMF) marker neutral lipid fatty acid (NLFA) 16:1 omega 5c increased. As indicated by redundancy analysis, litter pH and carbon concentration explained most of the variation in litter microbial community composition. In soil, microbial biomass did not vary significantly with rainforest conversion, whereas basal respiration declined. Total PLFAs and especially that of Gram-negative bacteria decreased, whereas PLFA i17:0 increased with rainforest conversion. The concentration of fungal PLFAs increased with rainforest conversion, whereas NLFA 16:1 omega 5c did not change significantly. Redundancy analysis indicated that soil pH explained most of the variation in soil microbial community composition. Overall, the data suggest that conversion of rainforests into production systems results in more pronounced changes in microbial community composition in soil as compared to litter. In particular, the response of fungi and bacteria was more pronounced in soil, while the response of AMF was more pronounced in litter. Notably, only certain bacterial markers but not those of saprotrophic fungi and AMF were detrimentally affected by rainforest conversion."],["dc.description.sponsorship","German Research Foundation (DFG) [CRC990]"],["dc.identifier.doi","10.1007/s00374-015-1021-4"],["dc.identifier.isi","000359160800006"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36417"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.issn","1432-0789"],["dc.relation.issn","0178-2762"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI WOS2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1236"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Systematic and Applied Acarology"],["dc.bibliographiccitation.lastpage","1248"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Ermilov, Sergey G."],["dc.contributor.author","Sandmann, Dorothee"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2020-12-10T18:36:35Z"],["dc.date.available","2020-12-10T18:36:35Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.11158/saa.24.7.8"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76681"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","New species and records of oribatid mites of the genus Protoribates (Acari, Oribatida, Haplozetidae) from Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1845"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Journal of Animal Ecology"],["dc.bibliographiccitation.lastpage","1859"],["dc.bibliographiccitation.volume","88"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Klarner, Bernhard"],["dc.contributor.author","Sandmann, Dorothee"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2020-01-29T10:50:42Z"],["dc.date.available","2020-01-29T10:50:42Z"],["dc.date.issued","2019"],["dc.description.abstract","Many ecosystem functions depend on the structure of food webs, which heavily relies on the body size spectrum of the community. Despite that, little is known on how the size spectrum of soil animals responds to agricultural practices in tropical land-use systems and how these responses affect ecosystem functioning. We studied land-use-induced changes in below-ground communities in tropical lowland ecosystems in Sumatra (Jambi province, Indonesia), a hot spot of tropical rainforest conversion into rubber and oil palm plantations. The study included ca. 30,000 measured individuals from 33 high-order taxa of meso- and macrofauna spanning eight orders of magnitude in body mass. Using individual body masses, we calculated the metabolism of trophic guilds and used food web models to calculate energy fluxes and infer ecosystem functions, such as decomposition, herbivory, primary and intraguild predation. Land-use change was associated with reduced abundance and taxonomic diversity of soil invertebrates, but strong increase in total biomass and moderate changes in total energy flux. These changes were due to increased biomass of large-sized decomposers in soil, in particular earthworms, with their share in community metabolism increasing from 11% in rainforest to 59%-76% in jungle rubber, and rubber and oil palm plantations. Decomposition, that is the energy flux to decomposers, stayed unchanged, but herbivory, primary and intraguild predation decreased by an order of magnitude in plantation systems. Intraguild predation was very important, being responsible for 38% of the energy flux in rainforest according to our model. Conversion of rainforest into monoculture plantations is associated by an uneven loss of size classes and trophic levels of soil invertebrates resulting in sequestration of energy in large-sized primary consumers and restricted flux of energy to higher trophic levels. Pronounced differences between rainforest and jungle rubber reflect sensitivity of rainforest soil animal communities to moderate land-use changes. Soil communities in plantation systems sustained high total energy flux despite reduced biodiversity. The high energy flux into large decomposers but low energy fluxes into other trophic guilds suggests that trophic multifunctionality of below-ground communities is compromised in plantation systems."],["dc.identifier.doi","10.1111/1365-2656.13027"],["dc.identifier.pmid","31111468"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62878"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B09: Oberirdische Biodiversitätsmuster und Prozesse in Regenwaldtransformations-Landschaften"],["dc.relation.eissn","1365-2656"],["dc.relation.issn","0021-8790"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","71"],["dc.bibliographiccitation.issue","529"],["dc.bibliographiccitation.journal","ZooKeys"],["dc.bibliographiccitation.lastpage","86"],["dc.contributor.author","Ermilov, Sergey G."],["dc.contributor.author","Sandmann, Dorothee"],["dc.contributor.author","Klarner, Bernhard"],["dc.contributor.author","Widyastuti, Rahaju"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2018-11-07T10:02:50Z"],["dc.date.available","2018-11-07T10:02:50Z"],["dc.date.issued","2015"],["dc.description.abstract","Two new species of oribatid mites of the genus Allogalumna (Oribatida, Galumnidae) are described from litter and soil materials of Sumatra, Indonesia. Allogalumna indonesiensis sp. n. is morphologically most similar to A. borhidii Balogh & Mahunka, 1979, A. quadrimaculata (Mahunka, 1988), A. rotundiceps Aoki, 1996 and A. plowmanae Balogh & Balogh, 1983; however, the new species differs by having densely ciliate bothridial heads, larger body size and absence of a median pore. Allogalumna paranovazealandica sp. n. is morphologically most similar to A. novazealandica Hammer, 1968; however, the new species differs by the shorter body length and barbed and curving postero-laterad bothridial setae. The genus Allogalumna is recorded for the first time in the Indonesian fauna."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.3897/zookeys.529.6326"],["dc.identifier.isi","000363702600002"],["dc.identifier.pmid","26692793"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12548"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38310"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.issn","1313-2970"],["dc.relation.issn","1313-2989"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Contributions to the knowledge of oribatid mites of Indonesia. 1. The genus Allogalumna (Galumnidae) with descriptions of two new species (Acari, Oribatida)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","e02957"],["dc.bibliographiccitation.journal","Ecology"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Dupérré, Nadine"],["dc.contributor.author","Jochum, Malte"],["dc.contributor.author","Dreczko, Kerstin"],["dc.contributor.author","Klarner, Bernhard"],["dc.contributor.author","Barnes, Andrew D."],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Rembold, Katja"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Brose, Ulrich"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Harms, Danilo"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2020-01-29T10:54:30Z"],["dc.date.available","2020-01-29T10:54:30Z"],["dc.date.issued","2019"],["dc.description.abstract","Deforestation and land-use change in tropical regions result in habitat loss and extinction of species that are unable to adapt to the conditions in agricultural landscapes. If the associated loss of functional diversity is not compensated by species colonizing the converted habitats, extinctions might be followed by a reduction or loss of ecosystem functions including biological control. To date, little is known on how land-use change in the tropics alters the functional diversity of invertebrate predators and which key environmental factors may mitigate the decline in functional diversity and predation in litter and soil communities. We applied litter sieving and heat extraction to study ground spider communities and assessed structural characteristics of vegetation and parameters of litter in rainforest and agricultural land-use systems (jungle rubber, rubber and oil palm monocultures) in a Southeast Asian hotspot of rainforest conversion: Sumatra, Indonesia. We found that (1) spider density, species richness, functional diversity and community predation (energy flux to spiders) were reduced by 57-98% from rainforest to oil palm monoculture; (2) jungle rubber and rubber monoculture sustained relatively high diversity and predation in ground spiders, but small cryptic spider species strongly declined; (3) high species turnover compensated losses of some functional trait combinations, but did not compensate for the overall loss of functional diversity and predation per unit area; (4) spider diversity was related to habitat structure such as amount of litter, understory density and understory height, while spider predation was better explained by plant diversity. Management practices that increase habitat structural complexity and plant diversity such as mulching, reduced weeding, and intercropping monocultures with other plants may contribute to maintaining functional diversity of and predation services provided by ground invertebrate communities in plantations."],["dc.identifier.doi","10.1002/ecy.2957"],["dc.identifier.pmid","31840252"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62879"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B01: Structure, stability and functioning of macro-invertebrate communities in rainforest transformation systems in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.eissn","1939-9170"],["dc.relation.issn","0012-9658"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Functional losses in ground spider communities due to habitat-structure degradation under tropical land-use change"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.journal","Frontiers in Ecology and Evolution"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Krause, Alena"],["dc.contributor.author","Sandmann, Dorothee"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Ermilov, Sergey"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Haneda, Noor Farikhah"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Maraun, Mark"],["dc.date.accessioned","2021-07-05T14:57:52Z"],["dc.date.available","2021-07-05T14:57:52Z"],["dc.date.issued","2021"],["dc.description.abstract","Land-use change is threatening biodiversity worldwide and is predicted to increase in the next decades, especially in tropical regions. Most studies focused on the response of single or few species to land-use change, only few investigated the response of entire communities. In particular the response of belowground communities to changes in land use received little attention. Oribatid mites (Oribatida, Acari) are among the most abundant soil animals, involved in decomposition processes and nutrient cycling. Oribatid mite species span a wide range of trophic niches and are known to sensitively respond to changes in land use. Here, we investigated shifts in the community-level trophic niche of oribatid mites with the conversion of rainforest into rubber and oil palm plantations. Due to a wider range of resources in more natural ecosystems, we expected the community-level trophic niche to shrink with conversion of rainforest into plantations. As the conversion of rainforest into plantations is associated with reduced availability of litter resources, we expected the average trophic level (indicated by the 15 N/ 14 N ratio) to be higher and basal resources (indicated by the 13 C/ 12 C ratio) to shift toward living plant material in rubber and oil palm plantations. Our analysis showed that community-level trophic niches in rainforest and rubber agroforest (“jungle rubber”) were separated from those in monoculture plantation systems, indicating a trophic niche shift with land-use intensification. As hypothesized, oribatid mites shifted their diet toward predation and/or scavenging and toward the plant-based energy channel with transformation of rainforest into plantations. Exceptionally low minimum 13 C/ 12 C ratios in rubber plantations suggest that certain oribatid mite species in this land-use system use resources not available in the other studied ecosystems. We detected high isotopic uniqueness in oil palm plantations suggesting a low trophic redundancy and thus high vulnerability of trophic functioning in this system in comparison to rainforest. Overall, the results suggest that the conversion of rainforest into plantations is associated with pronounced shifts in community-level trophic niches of mesofauna detritivores with potential major consequences for the functioning of the decomposer system."],["dc.description.abstract","Land-use change is threatening biodiversity worldwide and is predicted to increase in the next decades, especially in tropical regions. Most studies focused on the response of single or few species to land-use change, only few investigated the response of entire communities. In particular the response of belowground communities to changes in land use received little attention. Oribatid mites (Oribatida, Acari) are among the most abundant soil animals, involved in decomposition processes and nutrient cycling. Oribatid mite species span a wide range of trophic niches and are known to sensitively respond to changes in land use. Here, we investigated shifts in the community-level trophic niche of oribatid mites with the conversion of rainforest into rubber and oil palm plantations. Due to a wider range of resources in more natural ecosystems, we expected the community-level trophic niche to shrink with conversion of rainforest into plantations. As the conversion of rainforest into plantations is associated with reduced availability of litter resources, we expected the average trophic level (indicated by the 15 N/ 14 N ratio) to be higher and basal resources (indicated by the 13 C/ 12 C ratio) to shift toward living plant material in rubber and oil palm plantations. Our analysis showed that community-level trophic niches in rainforest and rubber agroforest (“jungle rubber”) were separated from those in monoculture plantation systems, indicating a trophic niche shift with land-use intensification. As hypothesized, oribatid mites shifted their diet toward predation and/or scavenging and toward the plant-based energy channel with transformation of rainforest into plantations. Exceptionally low minimum 13 C/ 12 C ratios in rubber plantations suggest that certain oribatid mite species in this land-use system use resources not available in the other studied ecosystems. We detected high isotopic uniqueness in oil palm plantations suggesting a low trophic redundancy and thus high vulnerability of trophic functioning in this system in comparison to rainforest. Overall, the results suggest that the conversion of rainforest into plantations is associated with pronounced shifts in community-level trophic niches of mesofauna detritivores with potential major consequences for the functioning of the decomposer system."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.3389/fevo.2021.592149"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87762"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-441"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation","SFB 990 | B | B13: Impact of management intensity and tree enrichment of oil palm plantations on below- and aboveground invertebrates in Sumatra (Indonesia)"],["dc.relation.eissn","2296-701X"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.relation.orgunit","Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Variation in Community-Level Trophic Niches of Soil Microarthropods With Conversion of Tropical Rainforest Into Plantation Systems as Indicated by Stable Isotopes (15N, 13C)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e10971"],["dc.bibliographiccitation.journal","PeerJ"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Susanti, Winda Ika"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Potapov, Anton"],["dc.date.accessioned","2021-04-12T09:59:47Z"],["dc.date.available","2021-04-12T09:59:47Z"],["dc.date.issued","2021"],["dc.description.abstract","Intensively managed monoculture plantations are increasingly replacing natural forests across the tropics resulting in changes in ecological niches of species and communities, and in ecosystem functioning. Collembola are among the most abundant arthropods inhabiting the belowground system sensitively responding to changes in vegetation and soil conditions. However, most studies on the response of Collembola to land-use change were conducted in temperate ecosystems and focused on shifts in community composition or morphological traits, while parameters more closely linked to ecosystem functioning, such as trophic niches, received little attention. Here, we used stable isotope analysis (13C and 15N) to investigate changes in the trophic structure and use of food resources by Collembola in Jambi province (Sumatra, Indonesia), a region that experienced strong deforestation in the last decades. Isotopic values of Collembola from 32 sites representing four land-use systems were analyzed (rainforest, rubber agroforest, rubber (Hevea brasiliansis) and oil palm (Elaeis guineensis) monoculture plantations). Across Collembola species Δ13C values were highest in rainforest suggesting more pronounced processing of litter resources by microorganisms and consumption of these microorganisms by Collembola in this system. Lower Δ13C values, but high Δ13C variation in Collembola in oil palm plantations indicated that Collembola shifted towards herbivory and used more variable resources in this system. Small range in Δ15N values in Collembola species in monoculture plantations in comparison to rainforest indicated that conversion of rainforest into plantations is associated with simplification in the trophic structure of Collembola communities. This was further confirmed by generally lower isotopic niche differentiation among species in plantations. Across the studied ecosystems, atmobiotic species (Symphypleona and Paronellidae) occupied the lowest, whereas euedaphic Collembola species occupied the highest trophic position, resembling patterns in temperate forests. Some species of Paronellidae in rainforest and jungle rubber had Δ15N values below those of leaf litter suggesting algivory (Salina sp.1, Callyntrura sp.1 and Lepidonella sp.1), while a dominant species, Pseudosinella sp.1, had the highest Δ15N values in most of the land-use systems suggesting that this species at least in part lives as predator or scavenger. Overall, the results suggest that rainforest conversion into plantation systems is associated with marked shifts in the structure of trophic niches in soil and litter Collembola with potential consequences for ecosystem functioning and food-web stability."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.7717/peerj.10971"],["dc.identifier.pmid","33717699"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80658"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.issn","2167-8359"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.subject.gro","sfb990_abs"],["dc.title","Trophic niche differentiation and utilisation of food resources in Collembola is altered by rainforest conversion to plantation systems"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","95"],["dc.bibliographiccitation.issue","820"],["dc.bibliographiccitation.journal","ZooKeys"],["dc.bibliographiccitation.lastpage","118"],["dc.contributor.author","Fardiansah, Riko"],["dc.contributor.author","Dupérré, Nadine"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Potapov, Anton"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Harms, Danilo"],["dc.date.accessioned","2019-07-09T11:49:58Z"],["dc.date.available","2019-07-09T11:49:58Z"],["dc.date.issued","2019"],["dc.description.abstract","Four new species of armoured spiders from Sumatra, Indonesia are described. Three species are described in the genus Ablemma Roewer, 1963 and one species in the genus Brignoliella Shear, 1978; Ablemmaandrianasp. n. (male), Ablemmacontritasp. n. (male and female), Ablemmakelincisp. n. (male) and Brignoliellapatmaesp. n. (male and female). The female of Ablemmasingalang Lehtinen, 1981 is described here for the first time. The first record of Brignoliella for Sumatra is also presented."],["dc.identifier.doi","10.3897/zookeys.820.29363"],["dc.identifier.pmid","30733636"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15824"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59669"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.issn","1313-2989"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.subject.gro","Journal Article"],["dc.subject.gro","ABS"],["dc.subject.gro","sfb990_journalarticles"],["dc.subject.gro","sfb990_abs"],["dc.title","Description of four new species of armoured spiders (Araneae, Tetrablemmidae) from Sumatra, Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC