Options
Schilling, Arndt Friedrich
Loading...
Preferred name
Schilling, Arndt Friedrich
Official Name
Schilling, Arndt Friedrich
Alternative Name
Schilling, A. F.
Schilling, Arndt
Schilling, A.
Schilling, Arndt F.
Main Affiliation
Now showing 1 - 9 of 9
2022-07-07Journal Article Research Paper [["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Biomedicines"],["dc.bibliographiccitation.volume","10"],["dc.contributor.affiliation","Jiang, Jun; 1Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; junqing.jiang@mri.tum.de (J.J.); lynn.roeper@mri.tum.de (L.R.); sarah.alageel@mri.tum.de (S.A.); e.hadjipanayi@googlemail.com (E.H.)"],["dc.contributor.affiliation","Röper, Lynn; 1Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; junqing.jiang@mri.tum.de (J.J.); lynn.roeper@mri.tum.de (L.R.); sarah.alageel@mri.tum.de (S.A.); e.hadjipanayi@googlemail.com (E.H.)"],["dc.contributor.affiliation","Alageel, Sarah; 1Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; junqing.jiang@mri.tum.de (J.J.); lynn.roeper@mri.tum.de (L.R.); sarah.alageel@mri.tum.de (S.A.); e.hadjipanayi@googlemail.com (E.H.)"],["dc.contributor.affiliation","Dornseifer, Ulf; 2Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany; ulf.dornseifer@isarklinikum.de"],["dc.contributor.affiliation","Schilling, Arndt F.; 3Department of Trauma Surgery, Orthopedics and Plastic Surgery, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany; arndt.schilling@med.uni-goettingen.de"],["dc.contributor.affiliation","Hadjipanayi, Ektoras; 1Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; junqing.jiang@mri.tum.de (J.J.); lynn.roeper@mri.tum.de (L.R.); sarah.alageel@mri.tum.de (S.A.); e.hadjipanayi@googlemail.com (E.H.)"],["dc.contributor.affiliation","Machens, Hans-Günther; 1Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; junqing.jiang@mri.tum.de (J.J.); lynn.roeper@mri.tum.de (L.R.); sarah.alageel@mri.tum.de (S.A.); e.hadjipanayi@googlemail.com (E.H.)"],["dc.contributor.affiliation","Moog, Philipp; 1Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; junqing.jiang@mri.tum.de (J.J.); lynn.roeper@mri.tum.de (L.R.); sarah.alageel@mri.tum.de (S.A.); e.hadjipanayi@googlemail.com (E.H.)"],["dc.contributor.author","Jiang, Jun"],["dc.contributor.author","Röper, Lynn"],["dc.contributor.author","Alageel, Sarah"],["dc.contributor.author","Dornseifer, Ulf"],["dc.contributor.author","Schilling, Arndt F."],["dc.contributor.author","Hadjipanayi, Ektoras"],["dc.contributor.author","Machens, Hans-Günther"],["dc.contributor.author","Moog, Philipp"],["dc.date.accessioned","2022-08-04T08:38:41Z"],["dc.date.available","2022-08-04T08:38:41Z"],["dc.date.issued","2022-07-07"],["dc.date.updated","2022-08-03T10:01:16Z"],["dc.description.abstract","Interest in discovering new methods of employing natural growth factor preparations to promote bone fracture healing is becoming increasingly popular in the field of regenerative medicine. In this study, we were able to demonstrate the osteogenic potential of hypoxia preconditioned serum (HPS) on human osteoblasts in vitro. Human osteoblasts were stimulated with two HPS concentrations (10% and 40%) and subsequently analyzed at time points of days 2 and 4. In comparison to controls, a time- and dose-dependent (up to 14.2× higher) proliferation of osteoblasts was observed after 4 days of HPS-40% stimulation with lower lactate dehydrogenase (LDH)-levels detected than controls, indicating the absence of cytotoxic/stress effects of HPS on human osteoblasts. With regards to cell migration, it was found to be significantly faster with HPS-10% application after 72 h in comparison to controls. Further osteogenic response to HPS treatment was evaluated by employing culture supernatant analysis, which exhibited significant upregulation of OPG (Osteoprotegerin) with higher dosage (HPS-10% vs. HPS-40%) and longer duration (2 d vs. 4 d) of HPS stimulation. There was no detection of anti-osteogenic sRANKL (soluble Receptor Activator of NF-κB Ligand) after 4 days of HPS stimulation. In addition, ALP (alkaline phosphatase)-enzyme activity, was found to be upregulated, dose-dependently, after 4 days of HPS-40% application. When assessing ossification through Alizarin-Red staining, HPS dose-dependently achieved greater (up to 2.8× higher) extracellular deposition of calcium-phosphate with HPS-40% in comparison to controls. These findings indicate that HPS holds the potential to accelerate bone regeneration by osteogenic promotion of human osteoblasts."],["dc.description.sponsorship","Technical University of Munich"],["dc.identifier.doi","10.3390/biomedicines10071631"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112636"],["dc.language.iso","en"],["dc.relation.eissn","2227-9059"],["dc.rights","CC BY 4.0"],["dc.title","Hypoxia Preconditioned Serum (HPS) Promotes Osteoblast Proliferation, Migration and Matrix Deposition"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.firstpage","365"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Biomedicines"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Moog, Philipp"],["dc.contributor.author","Schams, Rahmin"],["dc.contributor.author","Schneidinger, Alexander"],["dc.contributor.author","Schilling, Arndt F."],["dc.contributor.author","Machens, Hans-Günther"],["dc.contributor.author","Hadjipanayi, Ektoras"],["dc.contributor.author","Dornseifer, Ulf"],["dc.date.accessioned","2021-04-14T08:32:36Z"],["dc.date.available","2021-04-14T08:32:36Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.3390/biomedicines8090365"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83962"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.publisher","MDPI"],["dc.relation.eissn","2227-9059"],["dc.rights","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Effect of Hypoxia Preconditioned Secretomes on Lymphangiogenic and Angiogenic Sprouting: An in Vitro Analysis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","22"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Functional Biomaterials"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Hadjipanayi, Ektoras"],["dc.contributor.author","Moog, Philipp"],["dc.contributor.author","Bekeran, Sanjar"],["dc.contributor.author","Kirchhoff, Katharina"],["dc.contributor.author","Berezhnoi, Andrei"],["dc.contributor.author","Aguirre, Juan"],["dc.contributor.author","Bauer, Anna-Theresa"],["dc.contributor.author","Kükrek, Haydar"],["dc.contributor.author","Schmauss, Daniel"],["dc.contributor.author","Hopfner, Ursula"],["dc.contributor.author","Isenburg, Sarah"],["dc.contributor.author","Ntziachristos, Vasilis"],["dc.contributor.author","Ninkovic, Milomir"],["dc.contributor.author","Machens, Hans-Günther"],["dc.contributor.author","Schilling, Arndt F."],["dc.contributor.author","Dornseifer, Ulf"],["dc.date.accessioned","2020-12-10T18:47:13Z"],["dc.date.available","2020-12-10T18:47:13Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.3390/jfb10020022"],["dc.identifier.eissn","2079-4983"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78685"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.publisher","MDPI"],["dc.relation.eissn","2079-4983"],["dc.rights","https://creativecommons.org/licenses/by/4.0/"],["dc.title","In Vitro Characterization of Hypoxia Preconditioned Serum (HPS)—Fibrin Hydrogels: Basis for an Injectable Biomimetic Tissue Regeneration Therapy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","74"],["dc.bibliographiccitation.issue","02"],["dc.bibliographiccitation.journal","Handchirurgie, Mikrochirurgie, plastische Chirurgie"],["dc.bibliographiccitation.lastpage","82"],["dc.bibliographiccitation.volume","50"],["dc.contributor.author","Aitzetmüller, Matthias Michael"],["dc.contributor.author","Machens, Hans-Günther"],["dc.contributor.author","Schilling, Arndt F"],["dc.contributor.author","Duscher, Dominik"],["dc.date.accessioned","2020-12-10T18:12:28Z"],["dc.date.available","2020-12-10T18:12:28Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1055/s-0043-118596"],["dc.identifier.eissn","1439-3980"],["dc.identifier.issn","0722-1819"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74380"],["dc.language.iso","de"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Vergleich des Regenerativen Zytokinprofils von Adipose Derived Stromal Cells (ASCs) Gewonnen Mittels Abdominoplastik, Suction Assisted Liposuction (SAL) und Ultrasound Assisted Liposuction (UAL)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.journal","Frontiers in Bioengineering and Biotechnology"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Liu, Juan"],["dc.contributor.author","Zheng, Huaiyuan"],["dc.contributor.author","Dai, Xinyi"],["dc.contributor.author","Poh, Patrina S. P."],["dc.contributor.author","Machens, Hans-Günther"],["dc.contributor.author","Schilling, Arndt F."],["dc.date.accessioned","2021-04-14T08:31:17Z"],["dc.date.available","2021-04-14T08:31:17Z"],["dc.date.issued","2020"],["dc.description.abstract","Tissue engineering in combination with stem cell technology has the potential to revolutionize human healthcare. It aims at the generation of artificial tissues that can mimic the original with complex functions for medical applications. However, even the best current designs are limited in size, if the transport of nutrients and oxygen to the cells and the removal of cellular metabolites waste is mainly dependent on passive diffusion. Incorporation of functional biomimetic vasculature within tissue engineered constructs can overcome this shortcoming. Here, we developed a novel strategy using 3D printing and injection molding technology to customize multilayer hydrogel constructs with pre-vascularized structures in transparent Polydimethysiloxane (PDMS) bioreactors. These bioreactors can be directly connected to continuous perfusion systems without complicated construct assembling. Mimicking natural layer-structures of vascular walls, multilayer vessel constructs were fabricated with cell-laden fibrin and collagen gels, respectively. The multilayer design allows functional organization of multiple cell types, i.e., mesenchymal stem cells (MSCs) in outer layer, human umbilical vein endothelial cells (HUVECs) the inner layer and smooth muscle cells in between MSCs and HUVECs layers. Multiplex layers with different cell types showed clear boundaries and growth along the hydrogel layers. This work demonstrates a rapid, cost-effective, and practical method to fabricate customized 3D-multilayer vascular models. It allows precise design of parameters like length, thickness, diameter of lumens and the whole vessel constructs resembling the natural tissue in detail without the need of sophisticated skills or equipment. The ready-to-use bioreactor with hydrogel constructs could be used for biomedical applications including pre-vascularization for transplantable engineered tissue or studies of vascular biology."],["dc.identifier.doi","10.3389/fbioe.2020.568934"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83544"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","2296-4185"],["dc.rights","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Transparent PDMS Bioreactors for the Fabrication and Analysis of Multi-Layer Pre-vascularized Hydrogels Under Continuous Perfusion"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.firstpage","283"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Biomedicines"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Moog, Philipp"],["dc.contributor.author","Jensch, Maryna"],["dc.contributor.author","Hughes, Jessica"],["dc.contributor.author","Salgin, Burak"],["dc.contributor.author","Dornseifer, Ulf"],["dc.contributor.author","Machens, Hans-Günther"],["dc.contributor.author","Schilling, Arndt F."],["dc.contributor.author","Hadjipanayi, Ektoras"],["dc.date.accessioned","2021-04-14T08:23:47Z"],["dc.date.available","2021-04-14T08:23:47Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.3390/biomedicines8080283"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81050"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.publisher","MDPI"],["dc.relation.eissn","2227-9059"],["dc.rights","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Use of Oral Anticoagulation and Diabetes Do Not Inhibit the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.firstpage","16"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Biomedicines"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Moog, Philipp"],["dc.contributor.author","Kirchhoff, Katharina"],["dc.contributor.author","Bekeran, Sanjar"],["dc.contributor.author","Bauer, Anna-Theresa"],["dc.contributor.author","von Isenburg, Sarah"],["dc.contributor.author","Dornseifer, Ulf"],["dc.contributor.author","Machens, Hans-Günther"],["dc.contributor.author","Schilling, Arndt F."],["dc.contributor.author","Hadjipanayi, Ektoras"],["dc.date.accessioned","2020-12-10T18:46:57Z"],["dc.date.available","2020-12-10T18:46:57Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.3390/biomedicines8010016"],["dc.identifier.eissn","2227-9059"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78596"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.publisher","MDPI"],["dc.relation.eissn","2227-9059"],["dc.rights","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Comparative Evaluation of the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes and Platelet-Rich Plasma: An In Vitro Analysis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.artnumber","30"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Biological Engineering"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Ren, Ranyue"],["dc.contributor.author","Guo, Jiachao"],["dc.contributor.author","Liu, Guangwu"],["dc.contributor.author","Kang, Hao"],["dc.contributor.author","Machens, Hans-Günther"],["dc.contributor.author","Schilling, Arndt F."],["dc.contributor.author","Slobodianski, Alex"],["dc.contributor.author","Zhang, Ziyang"],["dc.date.accessioned","2022-12-01T08:31:23Z"],["dc.date.available","2022-12-01T08:31:23Z"],["dc.date.issued","2022"],["dc.date.updated","2022-11-06T04:13:42Z"],["dc.description.abstract","Abstract\r\n The fibroblast is one of the ideal target cell candidates for cell-based gene therapy approaches to promote tissue repair. Gene delivery to fibroblasts by viral transfection has been confirmed to have high transfection efficiency. However, in addition to immunogenic effects of viruses, the random integration of viral genes may damage the genome, affect the cell phenotype or even cause cancerous mutations in the transfected cells. Due to these potential biohazards and unknown long-term risks, the clinical use of viral transfection has been very limited. In contrast, initial non-viral transfection methods have been simple and safe to implement, with low immunogenicity, insertional mutagenesis, and risk of carcinogenesis, but their transfection efficiency has been relatively low. Nucleofection, a more recent non-viral transfection method, now combines the advantages of high transfection efficiency and direct nucleic acid delivery to the nucleus with a high safety.\r\n Here, we reviewed recent articles on fibroblast nucleofection, summarized different research points, improved methods and application scopes, and opened up ideas for promoting the further improvement and development of fibroblast nucleofection to meet the needs of a variety of disease research and clinical applications."],["dc.identifier.citation","Journal of Biological Engineering. 2022 Nov 04;16(1):30"],["dc.identifier.doi","10.1186/s13036-022-00309-5"],["dc.identifier.pii","309"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/118162"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","1754-1611"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","Nucleofection"],["dc.subject","Fibroblasts"],["dc.subject","Gene therapy"],["dc.subject","Transfection efficiency"],["dc.subject","Clinical applications"],["dc.title","Nucleic acid direct delivery to fibroblasts: a review of nucleofection and applications"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","798"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","International Journal of Medical Sciences"],["dc.bibliographiccitation.lastpage","803"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Zhang, Ziyang"],["dc.contributor.author","Slobodianski, Alex"],["dc.contributor.author","Arnold, Astrid"],["dc.contributor.author","Nehlsen, Jessica"],["dc.contributor.author","Hopfner, Ursula"],["dc.contributor.author","Schilling, Arndt F."],["dc.contributor.author","Perisic, Tatjana"],["dc.contributor.author","Machens, Hans-Günther"],["dc.date.accessioned","2020-12-10T18:48:03Z"],["dc.date.available","2020-12-10T18:48:03Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.7150/ijms.19241"],["dc.identifier.issn","1449-1907"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17020"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79001"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY-NC 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/4.0"],["dc.title","High Efficiency Low Cost Fibroblast Nucleofection for GMP Compatible Cell-based Gene Therapy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI