Now showing 1 - 2 of 2
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Zhang, Ying"],["dc.contributor.author","De Laurentiis, Evelina"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Wahlig, Mascha"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Gruseck, Simon"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Wölfle, Tina"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Rospert, Sabine"],["dc.date.accessioned","2021-04-14T08:28:39Z"],["dc.date.available","2021-04-14T08:28:39Z"],["dc.date.issued","2021"],["dc.description.abstract","The guided entry of tail-anchored proteins (GET) pathway assists in the posttranslational delivery of tail-anchored proteins, containing a single C-terminal transmembrane domain, to the ER. Here we uncover how the yeast GET pathway component Get4/5 facilitates capture of tail-anchored proteins by Sgt2, which interacts with tail-anchors and hands them over to the targeting component Get3. Get4/5 binds directly and with high affinity to ribosomes, positions Sgt2 close to the ribosomal tunnel exit, and facilitates the capture of tail-anchored proteins by Sgt2. The contact sites of Get4/5 on the ribosome overlap with those of SRP, the factor mediating cotranslational ER-targeting. Exposure of internal transmembrane domains at the tunnel exit induces high-affinity ribosome binding of SRP, which in turn prevents ribosome binding of Get4/5. In this way, the position of a transmembrane domain within nascent ER-targeted proteins mediates partitioning into either the GET or SRP pathway directly at the ribosomal tunnel exit."],["dc.identifier.doi","10.1038/s41467-021-20981-3"],["dc.identifier.pmid","33542241"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82670"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/220"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/139"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P16: Co-translationaler Einbau von Proteinen in die bakterielle Plasmamembran"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG K. Bohnsack (RNA Metabolism)"],["dc.relation.workinggroup","RG Rodnina"],["dc.rights","CC BY 4.0"],["dc.title","Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2104"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","2119"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Haag, Sara"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Warda, Ahmed S."],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Blessing, Charlotte"],["dc.contributor.author","Hübner, Benedikt"],["dc.contributor.author","Seikowski, Jan"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2017-09-07T11:44:33Z"],["dc.date.available","2017-09-07T11:44:33Z"],["dc.date.issued","2016"],["dc.description.abstract","Mitochondrial gene expression uses a non-universal genetic code in mammals. Besides reading the conventional AUG codon, mitochondrial (mt-)tRNA(Met) mediates incorporation of methionine on AUA and AUU codons during translation initiation and on AUA codons during elongation. We show that the RNA methyltransferase NSUN3 localises to mitochondria and interacts with mt-tRNA(Met) to methylate cytosine 34 (C34) at the wobble position. NSUN3 specifically recognises the anticodon stem loop (ASL) of the tRNA, explaining why a mutation that compromises ASL basepairing leads to disease. We further identify ALKBH1/ABH1 as the dioxygenase responsible for oxidising m(5)C34 of mt-tRNA(Met) to generate an f(5)C34 modification. In vitro codon recognition studies with mitochondrial translation factors reveal preferential utilisation of m(5)C34 mt-tRNA(Met) in initiation. Depletion of either NSUN3 or ABH1 strongly affects mitochondrial translation in human cells, implying that modifications generated by both enzymes are necessary for mt-tRNA(Met) function. Together, our data reveal how modifications in mt-tRNA(Met) are generated by the sequential action of NSUN3 and ABH1, allowing the single mitochondrial tRNA(Met) to recognise the different codons encoding methionine."],["dc.identifier.doi","10.15252/embj.201694885"],["dc.identifier.gro","3141604"],["dc.identifier.isi","000385707500006"],["dc.identifier.pmid","27497299"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13845"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/235"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/5"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | P14: Die Rolle humaner Nucleoporine in Biogenese und Export makromolekularer Komplexe"],["dc.relation","SFB 1190 | P16: Co-translationaler Einbau von Proteinen in die bakterielle Plasmamembran"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.relation.workinggroup","RG M. Bohnsack (Molecular Biology)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Rodnina"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","NSUN3 and ABH1 modify the wobble position of mt-tRNA(Met) to expand codon recognition in mitochondrial translation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS