Options
Geyer, Tobias
Loading...
Preferred name
Geyer, Tobias
Official Name
Geyer, Tobias
Alternative Name
Geyer, T.
Main Affiliation
Now showing 1 - 2 of 2
2014Journal Article [["dc.bibliographiccitation.firstpage","227"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","HYDROLOGY AND EARTH SYSTEM SCIENCES"],["dc.bibliographiccitation.lastpage","241"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Reimann, Thomas"],["dc.contributor.author","Giese, Marcus"],["dc.contributor.author","Geyer, Tobias"],["dc.contributor.author","Liedl, Rudolf"],["dc.contributor.author","Marechal, J. C."],["dc.contributor.author","Shoemaker, W. Barclay"],["dc.date.accessioned","2018-11-07T09:46:33Z"],["dc.date.available","2018-11-07T09:46:33Z"],["dc.date.issued","2014"],["dc.description.abstract","Karst aquifers are characterized by highly conductive conduit flow paths embedded in a less conductive fissured and fractured matrix, resulting in strong permeability contrasts with structured heterogeneity and anisotropy. Groundwater storage occurs predominantly in the fissured matrix. Hence, most mathematical karst models assume quasi-steady-state flow in conduits neglecting conduit-associated drainable storage (CADS). The concept of CADS considers storage volumes, where karst water is not part of the active flow system but hydraulically connected to conduits (for example karstic voids and large fractures). The disregard of conduit storage can be inappropriate when direct water abstraction from karst conduits occurs, e. g., large-scale pumping. In such cases, CADS may be relevant. Furthermore, the typical fixed-head boundary condition at the karst outlet can be inadequate for water abstraction scenarios because unhampered water inflow is possible. The objective of this work is to analyze the significance of CADS and flow-limited boundary conditions on the hydraulic behavior of karst aquifers in water abstraction scenarios. To this end, the numerical discrete-continuum model MODFLOW-2005 Conduit Flow Process Mode 1 (CFPM1) is enhanced to account for CADS. Additionally, a fixed-head limited-flow (FHLQ) boundary condition is added that limits inflow from constant head boundaries to a user-defined threshold. The effects and the proper functioning of these modifications are demonstrated by simplified model studies. Both enhancements, CADS and FHLQ boundary, are shown to be useful for water abstraction scenarios within karst aquifers. An idealized representation of a large-scale pumping test in a karst conduit is used to demonstrate that the enhanced CFPM1 is able to adequately represent water abstraction processes in both the conduits and the matrix of real karst systems, as illustrated by its application to the Cent Fonts karst system."],["dc.identifier.doi","10.5194/hess-18-227-2014"],["dc.identifier.isi","000331123300014"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11690"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/34895"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Copernicus Gesellschaft Mbh"],["dc.relation.issn","1607-7938"],["dc.relation.issn","1027-5606"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0/"],["dc.title","Representation of water abstraction from a karst conduit with numerical discrete-continuum models"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS2012Journal Article [["dc.bibliographiccitation.firstpage","3909"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","HYDROLOGY AND EARTH SYSTEM SCIENCES"],["dc.bibliographiccitation.lastpage","3923"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Kordilla, Jannes"],["dc.contributor.author","Sauter, M."],["dc.contributor.author","Reimann, Thomas"],["dc.contributor.author","Geyer, Tobias"],["dc.date.accessioned","2018-11-07T09:14:50Z"],["dc.date.available","2018-11-07T09:14:50Z"],["dc.date.issued","2012"],["dc.description.abstract","The objective of this work is the simulation of saturated and unsaturated flow in a karstified aquifer using a double continuum approach. The HydroGeoSphere code (Therrien et al., 2006) is employed to simulate spring discharge with the Richards equations and van Genuchten parameters to represent flow in the (1) fractured matrix and (2) conduit continuum coupled by a linear exchange term. Rapid vertical small-scale flow processes in the unsaturated conduit continuum are accounted for by applying recharge boundary conditions at the bottom of the saturated model domain. An extensive sensitivity analysis is performed on single parameters as well as parameter combinations. The transient hydraulic response of the karst spring is strongly controlled by the matrix porosity as well as the van Genuchten parameters of the unsaturated matrix, which determine the head dependent inter-continuum water transfer when the conduits are draining the matrix. Sensitivities of parameter combinations partially reveal a non-linear dependence over the parameter space. This can be observed for parameters not belonging to the same continuum as well as combinations, which involve the exchange parameter, showing that results of the double continuum model may depict a certain degree of ambiguity. The application of van Genuchten parameters for simulation of unsaturated flow in karst systems is critically discussed."],["dc.identifier.doi","10.5194/hess-16-3909-2012"],["dc.identifier.isi","000310474300028"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9516"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/27516"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Copernicus Gesellschaft Mbh"],["dc.relation.issn","1607-7938"],["dc.relation.issn","1027-5606"],["dc.rights","CC BY-NC 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/3.0"],["dc.title","Simulation of saturated and unsaturated flow in karst systems at catchment scale using a double continuum approach"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS