Now showing 1 - 7 of 7
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","1232"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Chemical Science"],["dc.bibliographiccitation.lastpage","1243"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Hellström, Matti"],["dc.contributor.author","Quaranta, Vanessa"],["dc.contributor.author","Behler, Jörg"],["dc.date.accessioned","2021-06-01T10:50:50Z"],["dc.date.available","2021-06-01T10:50:50Z"],["dc.date.issued","2019"],["dc.description.abstract","Neural network molecular dynamics simulations unravel the long-range proton transport properties of ZnO–water interfaces."],["dc.description.abstract","Long-range charge transport is important for many applications like batteries, fuel cells, sensors, and catalysis. Obtaining microscopic insights into the atomistic mechanism is challenging, in particular if the underlying processes involve protons as the charge carriers. Here, large-scale reactive molecular dynamics simulations employing an efficient density-functional-theory-based neural network potential are used to unravel long-range proton transport mechanisms at solid–liquid interfaces, using the zinc oxide–water interface as a prototypical case. We find that the two most frequently occurring ZnO surface facets, (101̄0) and (112̄0), that typically dominate the morphologies of zinc oxide nanowires and nanoparticles, show markedly different proton conduction behaviors along the surface with respect to the number of possible proton transfer mechanisms, the role of the solvent for long-range proton migration, as well as the proton transport dimensionality. Understanding such surface-facet-specific mechanisms is crucial for an informed bottom-up approach for the functionalization and application of advanced oxide materials."],["dc.identifier.doi","10.1039/C8SC03033B"],["dc.identifier.eissn","2041-6539"],["dc.identifier.issn","2041-6520"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86804"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","2041-6539"],["dc.relation.issn","2041-6520"],["dc.title","One-dimensional vs. two-dimensional proton transport processes at solid–liquid zinc-oxide–water interfaces"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","15786"],["dc.bibliographiccitation.issue","69"],["dc.bibliographiccitation.journal","Chemistry – A European Journal"],["dc.bibliographiccitation.lastpage","15794"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Keil, Helena"],["dc.contributor.author","Hellström, Matti"],["dc.contributor.author","Stückl, Claudia"],["dc.contributor.author","Herbst‐Irmer, Regine"],["dc.contributor.author","Behler, Jörg"],["dc.contributor.author","Stalke, Dietmar"],["dc.date.accessioned","2020-12-10T14:05:54Z"],["dc.date.available","2020-12-10T14:05:54Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1002/chem.v25.69"],["dc.identifier.eissn","1521-3765"],["dc.identifier.issn","0947-6539"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69700"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","New Insights into the Catalytic Activity of Cobalt Orthophosphate Co 3 (PO 4 ) 2 from Charge Density Analysis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","1293"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry C"],["dc.bibliographiccitation.lastpage","1304"],["dc.bibliographiccitation.volume","123"],["dc.contributor.author","Quaranta, Vanessa"],["dc.contributor.author","Behler, Jörg"],["dc.contributor.author","Hellström, Matti"],["dc.date.accessioned","2020-12-10T15:22:45Z"],["dc.date.available","2020-12-10T15:22:45Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1021/acs.jpcc.8b10781"],["dc.identifier.eissn","1932-7455"],["dc.identifier.issn","1932-7447"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73526"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Structure and Dynamics of the Liquid–Water/Zinc-Oxide Interface from Machine Learning Potential Simulations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","241720"],["dc.bibliographiccitation.issue","24"],["dc.bibliographiccitation.journal","The Journal of Chemical Physics"],["dc.bibliographiccitation.volume","148"],["dc.contributor.author","Quaranta, Vanessa"],["dc.contributor.author","Hellström, Matti"],["dc.contributor.author","Behler, Jörg"],["dc.contributor.author","Kullgren, Jolla"],["dc.contributor.author","Mitev, Pavlin D."],["dc.contributor.author","Hermansson, Kersti"],["dc.date.accessioned","2020-12-10T18:12:38Z"],["dc.date.available","2020-12-10T18:12:38Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1063/1.5012980"],["dc.identifier.eissn","1089-7690"],["dc.identifier.issn","0021-9606"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74445"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(101¯0) interface from a high-dimensional neural network potential"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","10158"],["dc.bibliographiccitation.issue","44"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry B"],["dc.bibliographiccitation.lastpage","10171"],["dc.bibliographiccitation.volume","122"],["dc.contributor.author","Hellström, Matti"],["dc.contributor.author","Ceriotti, Michele"],["dc.contributor.author","Behler, Jörg"],["dc.date.accessioned","2020-12-10T15:22:44Z"],["dc.date.available","2020-12-10T15:22:44Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1021/acs.jpcb.8b06433"],["dc.identifier.eissn","1520-5207"],["dc.identifier.issn","1520-6106"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73513"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Nuclear Quantum Effects in Sodium Hydroxide Solutions from Neural Network Molecular Dynamics Simulations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","10426"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","Physical Chemistry Chemical Physics"],["dc.bibliographiccitation.lastpage","10430"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Shao, Yunqi"],["dc.contributor.author","Hellström, Matti"],["dc.contributor.author","Yllö, Are"],["dc.contributor.author","Mindemark, Jonas"],["dc.contributor.author","Hermansson, Kersti"],["dc.contributor.author","Behler, Jörg"],["dc.contributor.author","Zhang, Chao"],["dc.date.accessioned","2021-04-14T08:25:45Z"],["dc.date.available","2021-04-14T08:25:45Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1039/c9cp06479f"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81721"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1463-9084"],["dc.relation.issn","1463-9076"],["dc.title","Temperature effects on the ionic conductivity in concentrated alkaline electrolyte solutions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","28731"],["dc.bibliographiccitation.issue","42"],["dc.bibliographiccitation.journal","Physical Chemistry Chemical Physics"],["dc.bibliographiccitation.lastpage","28748"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Hellström, Matti"],["dc.contributor.author","Behler, Jörg"],["dc.date.accessioned","2021-06-01T10:50:48Z"],["dc.date.available","2021-06-01T10:50:48Z"],["dc.date.issued","2017"],["dc.description.abstract","We develop a simple model capable of predicting coverage-dependent adsorption energies for redox-active adsorbates on semiconductor surfaces."],["dc.description.abstract","Density functional theory (DFT) is routinely used to calculate the adsorption energies of molecules on solid surfaces, which can be employed to derive surface phase diagrams. Such calculations become computationally expensive if the number of substrate atoms is large, which happens whenever the adsorbate coverage is small. Here, we propose an efficient method for calculating surface phase diagrams for redox-active adsorbates on semiconductors, that we apply to the important example of proton (H + ) and hydride (H − ) adsorbates on a ZnO surface. We identify the leading cause for the coverage dependence of the adsorption energies to be the filling and depletion of the disperse substrate conduction band. From only four DFT calculations, coupled with an analysis of the substrate electronic band structure and changes in the electrostatic potential within the substrate upon adsorption, we derive a phenomenological model that well describes the coverage-dependent adsorption energies. Moreover, our model allows us to extrapolate to the “infinite” supercell limit, where additional H adsorption leads to an arbitrarily small increase of the surface coverage. With this tool we are able to derive a surface phase diagram containing structures with extremely small H coverages (<0.002 ML), that have so far been unattainable. We expect that such models can be applied to a wide range of semiconductor substrates and redox-active adsorbates."],["dc.identifier.doi","10.1039/C7CP05182D"],["dc.identifier.eissn","1463-9084"],["dc.identifier.issn","1463-9076"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86790"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1463-9084"],["dc.relation.issn","1463-9076"],["dc.title","Surface phase diagram prediction from a minimal number of DFT calculations: redox-active adsorbates on zinc oxide"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI