Options
Schendzielorz, Alexander Benjamin
Loading...
Preferred name
Schendzielorz, Alexander Benjamin
Official Name
Schendzielorz, Alexander Benjamin
Alternative Name
Schendzielorz, A. B.
Schendzielorz, Alexander
Schendzielorz, A.
Schendzielorz, Alexander B.
Main Affiliation
Now showing 1 - 4 of 4
2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","5715"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Dybkov, Olexandr"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Cruz-Zaragoza, Luis Daniel"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2021-10-01T09:57:33Z"],["dc.date.available","2021-10-01T09:57:33Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41467-021-26016-1"],["dc.identifier.pii","26016"],["dc.identifier.pmid","34588454"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89863"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/348"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/157"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Ficner (Molecular Structural Biology)"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 4.0"],["dc.title","Mapping protein interactions in the active TOM-TIM23 supercomplex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","471"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","310"],["dc.bibliographiccitation.volume","167"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Ronsör, Christin"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Wang, Cong"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Dennerlein, Sven"],["dc.date.accessioned","2017-09-07T11:44:33Z"],["dc.date.available","2017-09-07T11:44:33Z"],["dc.date.issued","2016"],["dc.description.abstract","Mitochondrial ribosomes translate membrane integral core subunits of the oxidative phosphorylation system encoded by mtDNA. These translation products associate with nuclear-encoded, imported proteins to form enzyme complexes that produce ATP. Here, we show that human mitochondrial ribosomes display translational plasticity to cope with the supply of imported nuclear-encoded subunits. Ribosomes expressing mitochondrial-encoded COX1 mRNA selectively engage with cytochrome c oxidase assembly factors in the inner membrane. Assembly defects of the cytochrome c oxidase arrest mitochondrial translation in a ribosome nascent chain complex with a partially membrane-inserted COX1 translation product. This complex represents a primed state of the translation product that can be retrieved for assembly. These findings establish a mammalian translational plasticity pathway in mitochondria that enables adaptation of mitochondrial protein synthesis to the influx of nuclear-encoded subunits."],["dc.identifier.doi","10.1016/j.cell.2016.09.003"],["dc.identifier.gro","3141603"],["dc.identifier.isi","000386343100022"],["dc.identifier.pmid","27693358"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13996"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/124"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1097-4172"],["dc.relation.issn","0092-8674"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e28324"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Denkert, Niels"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Versemann, Lennart"],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2020-12-10T18:48:05Z"],["dc.date.available","2020-12-10T18:48:05Z"],["dc.date.issued","2017"],["dc.description.abstract","Virtually all mitochondrial matrix proteins and a considerable number of inner membrane proteins carry a positively charged, N-terminal presequence and are imported by the TIM23 complex (presequence translocase) located in the inner mitochondrial membrane. The voltage-regulated Tim23 channel constitutes the actual protein-import pore wide enough to allow the passage of polypeptides with a secondary structure. In this study, we identify amino acids important for the cation selectivity of Tim23. Structure based mutants show that selectivity is provided by highly conserved, pore-lining amino acids. Mutations of these amino acid residues lead to reduced selectivity properties, reduced protein import capacity and they render the Tim23 channel insensitive to substrates. We thus show that the cation selectivity of the Tim23 channel is a key feature for substrate recognition and efficient protein import."],["dc.format.extent","1"],["dc.identifier.doi","10.7554/eLife.28324"],["dc.identifier.pmid","28857742"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16499"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79012"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/12"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P12: Funktionelle Regulation der mitochondrialen Präsequenz-Translokase"],["dc.relation.eissn","2050-084X"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","S. cerevisiae; Tim23; biochemistry; biophysics; electrophysiology; membrane channels; mitochondria; mitochondrial biogenesis; protein trafficking; structural biology"],["dc.title","Cation selectivity of the presequence translocase channel Tim23 is crucial for efficient protein import"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","83"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","92"],["dc.bibliographiccitation.volume","216"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Ieva, Raffaele"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:53:21Z"],["dc.date.available","2017-09-07T11:53:21Z"],["dc.date.issued","2017"],["dc.description.abstract","wo driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor's hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate-driven import motor activity."],["dc.identifier.doi","10.1083/jcb.201607066"],["dc.identifier.gro","3145078"],["dc.identifier.pmid","28011846"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2774"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/7"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | Z03: Synthetische genetische Analyse, automatisierte Mikroskopie und Bildanalyse"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY-NC-SA 4.0"],["dc.title","Two distinct membrane potential–dependent steps drive mitochondrial matrix protein translocation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC