Options
Kaulfuß, Silke
Loading...
Preferred name
Kaulfuß, Silke
Official Name
Kaulfuß, Silke
Alternative Name
Kaulfuß, S.
Kaulfuss, Silke
Kaulfuss, S.
Main Affiliation
Now showing 1 - 10 of 11
2008Conference Abstract [["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","European Urology Supplements"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Possner, Maria"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Strauss, A."],["dc.contributor.author","Schulz, W."],["dc.contributor.author","Ringert, Rolf-Hermann"],["dc.contributor.author","Thelen, Paul"],["dc.date.accessioned","2018-11-07T11:17:35Z"],["dc.date.available","2018-11-07T11:17:35Z"],["dc.date.issued","2008"],["dc.format.extent","173"],["dc.identifier.doi","10.1016/S1569-9056(08)60407-8"],["dc.identifier.isi","000253839800404"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/54838"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.publisher.place","Amsterdam"],["dc.relation.issn","1569-9056"],["dc.title","Functional analysis of NKX3.1 by RNA interference in LNCaP prostate cancer cells"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2010Journal Article [["dc.bibliographiccitation.firstpage","1124"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Der Urologe"],["dc.bibliographiccitation.lastpage","1130"],["dc.bibliographiccitation.volume","49"],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Strauss, A."],["dc.contributor.author","Stettner, Mark"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Ringert, Rolf-Hermann"],["dc.contributor.author","Loertzer, Hagen"],["dc.date.accessioned","2018-11-07T08:40:13Z"],["dc.date.available","2018-11-07T08:40:13Z"],["dc.date.issued","2010"],["dc.description.abstract","In advanced prostate cancer, albeit castration resistant, an active androgen receptor is still pivotal for growth and cell survival. Recent therapies involving more effective antiandrogens such as MDV3100 proved to be successful. Furthermore, blocking de novo intracrine androgen synthesis, e.g. with abiraterone acetate, provides additional benefit. Besides these antiandrogen measures, compounds which enable the reconstitution of the oestrogen receptor beta as a tumour suppressor restrain aberrant androgen receptor signalling."],["dc.identifier.doi","10.1007/s00120-010-2370-0"],["dc.identifier.isi","000281611000003"],["dc.identifier.pmid","20725712"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7794"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/19177"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","Heidelberg"],["dc.relation.issn","1433-0563"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Antiandrogen strategies in prostate cancer Reconstitution of the beta-Ostrogenrezeptors"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2007Journal Article [["dc.bibliographiccitation.firstpage","2626"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Molecular Cancer Therapeutics"],["dc.bibliographiccitation.lastpage","2633"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Stettner, Mark"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","Schweyer, Stefan"],["dc.contributor.author","Strauss, Arne"],["dc.contributor.author","Ringert, Rolf-Hermann"],["dc.contributor.author","Thelen, Paul"],["dc.date.accessioned","2018-11-07T10:58:18Z"],["dc.date.available","2018-11-07T10:58:18Z"],["dc.date.issued","2007"],["dc.description.abstract","In the prostate, estrogen receptor beta (ER beta), the preferred receptor for phytoestrogens, has features of a tumor suppressor. To investigate the mechanisms underlying the beneficial effects on prostate cancer of histone deacetylase inhibitor valproic acid (VPA) and phytoestrogen tectorigenin, we analyzed the expression of ER after tectorigenin or VPA treatment. For further functional analysis, we knocked down ER beta expression by RNA interference. LNCaP prostate cancer cells were treated with 5 mmol/L VPA or 100 mu mol/L tectorigenin and transfected with small interfering RNA (siRNA) against ER beta. Control transfections were done with luciferase (LUC) siRNA. Expression of ER beta was assessed by Western blot. mRNA expression was quantitated by real-time reverse transcription-PCR. Expression of ER beta mRNA and protein markedly increased after VPA or tectorigenin treatment. When ER beta was knocked down by siRNA, the expression of prostate-derived Ets factor, prostate-specific antigen, prostate cancer-specific indicator gene DD3(PCA3), insulin-like growth factor-1 receptor, the catalytic subunit of the telomerase, and ER beta was up-regulated and the tectorigenin effects were abrogated. ER beta levels were diminished in prostate cancer and loss of ER beta was associated with proliferation. Here, we show that siRNA-mediated knockdown of ER beta increases the expression of genes highly relevant to tumor cell proliferation. In addition, we show that one prominent result of treatment with VPA or tectorigenin is the up-regulation of ER beta resulting in antiproliferative effects. Thus, these drugs, by restoring the regulatory function of ER in tumor cells, could become useful in the intervention of prostate cancer."],["dc.identifier.doi","10.1158/1535-7163.MCT-07-0197"],["dc.identifier.isi","000250252100003"],["dc.identifier.pmid","17913855"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/50445"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Assoc Cancer Research"],["dc.relation.issn","1535-7163"],["dc.title","The relevance of estrogen receptor-beta expression to the antiproliferative effects observed with histone deacetylase inhibitors and phytoestrogens in prostate cancer treatment"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.firstpage","34971"],["dc.bibliographiccitation.issue","21"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","34979"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Gehrig, Julia"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Jarry, Hubertus"],["dc.contributor.author","Bremmer, Felix"],["dc.contributor.author","Stettner, Mark"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","Thelen, Paul"],["dc.date.accessioned","2018-11-07T10:23:41Z"],["dc.date.available","2018-11-07T10:23:41Z"],["dc.date.issued","2017"],["dc.description.abstract","Advanced prostate cancer can develop into castration-resistant prostate cancer (CRPC). This process is mediated either by intratumoral ligand synthesis or by mutations or aberrations of the androgen receptor (AR) or its cofactors. To date, no curative therapy for CRPC is available, as AR-targeted therapies eventually result in the development of resistance. The human prostate cancer cell line VCaP (vertebral cancer of the prostate) overexpresses AR and its splice variants (ARVs) as a mechanism of resistance to androgen-deprivation therapy (ADT) of external and intratumoral origin. In the present study, we demonstrate that stimulating estrogen receptor beta activity with the specific agonist 8 beta-VE2 in VCaP cells in successive stages of ADT induced a time-and dose-dependent decrease in cell survival and an increase in apoptosis. Furthermore, 8 beta-VE2 treatment reduced the overexpression of the AR as well as ARVs in VCaP cells under maximum ADT. Our results indicate that decreased survival of the androgen-dependent CRPC cells employing apoptosis together with the regulative effect on AR expression could have beneficial effects over current AR-targeting therapies."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.18632/oncotarget.16496"],["dc.identifier.isi","000402051700085"],["dc.identifier.pmid","28380417"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14426"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42509"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Impact Journals Llc"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Prospects of estrogen receptor beta activation in the treatment of castration-resistant prostate cancer"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article [["dc.bibliographiccitation.firstpage","1115"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Carcinogenesis"],["dc.bibliographiccitation.lastpage","1124"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Witt, Daria"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","von Hardenberg, Sandra"],["dc.contributor.author","Opitz, Lennart"],["dc.contributor.author","Salinas-Riester, Gabriela"],["dc.contributor.author","Bremmer, Felix"],["dc.contributor.author","Schweyer, Stefan"],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Neesen, Juergen"],["dc.contributor.author","Kaulfuss, Silke"],["dc.date.accessioned","2018-11-07T09:25:10Z"],["dc.date.available","2018-11-07T09:25:10Z"],["dc.date.issued","2013"],["dc.description.abstract","In this study, primary murine prostate cancer (PCa) cells were derived using the well-established TRAMP model. These PCa cells were treated with the histone deacetylase inhibitor, valproic acid (VPA), and we demonstrated that VPA treatment has an antimigrative, antiinvasive and antiproliferative effect on PCa cells. Using microarray analyses, we discovered several candidate genes that could contribute to the cellular effects we observed. In this study, we could demonstrate that VPA treatment of PCa cells causes the re-expression of cyclin D2, a known regulator that is frequently lost in PCa as we could show using immunohistochemical analyses on PCa specimens. We demonstrate that VPA specifically induces the re-expression of cyclin D2, one of the highly conserved D-type cyclin family members, in several cancer cell lines with weak or no cyclin D2 expression. Interestingly, VPA treatment had no effect in fibroblasts, which typically have high basal levels of cyclin D2 expression. The re-expression of cyclin D2 observed in PCa cells is activated by increased histone acetylation in the promoter region of the Ccnd2 gene and represents one underlying molecular mechanism of VPA treatment that inhibits the proliferation of cancer cells. Altogether, our results confirm that VPA is an anticancer therapeutic drug for the treatment of tumors with epigenetically repressed cyclin D2 expression."],["dc.identifier.doi","10.1093/carcin/bgt019"],["dc.identifier.isi","000318646000021"],["dc.identifier.pmid","23349020"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/30001"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","0143-3334"],["dc.title","Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2008Journal Article [["dc.bibliographiccitation.firstpage","877"],["dc.bibliographiccitation.journal","INTERNATIONAL JOURNAL OF ONCOLOGY"],["dc.bibliographiccitation.lastpage","884"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Possner, Maria"],["dc.contributor.author","Heuser, Markus"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Scharf, Jens-Gerd"],["dc.contributor.author","Schulz, Wolfgang"],["dc.contributor.author","Ringert, Rolf-Hermann"],["dc.contributor.author","Thelen, Paul"],["dc.date.accessioned","2019-07-10T08:13:32Z"],["dc.date.available","2019-07-10T08:13:32Z"],["dc.date.issued","2008"],["dc.description.abstract","The function of the androgen-regulated homeobox protein NKX3.1 in prostate cancer is controversial. NKX3.1 is necessary for correct prostate development and undergoes frequent allelic loss in prostate cancer. However, no mutations occur in the coding region and some particularly aggressive cancers over-express the protein. Nevertheless NKX3.1 is often referred to as candidate tumor suppressor gene. Recent findings suggest a function in protection against oxidative damage involved in prostate carcinogenesis. Thus NKX3.1 may act differently at various stages of prostate cancer. Unlike a classical tumor suppressor NKX3.1 is up-regulated by androgens and down-regulated by phytoestrogens. In this study we performed RNAi based functional analysis by knocking down NKX3.1 expression in LNCaP prostate cancer cells and analyzing the impact of NKX3.1 on gene expression and cell proliferation. Knockdown of NKX3.1 evoked a massive down-regulation of NKX3.1 expression, followed by reduction in mRNA expression of the androdrogen receptor (AR) and the insulinlike growth factor receptor (IGF-1R). Western blot analysis showed strong decreases of NKX3.1, AR, and IGF-1R protein expression. Concomitantly, cell proliferation decreased and expression of prostate-specific antigen (PSA) mRNA and its secretion were diminished, whereas expression of IGF binding protein 3 (IGFBP-3) and MMP tissue inhibitor 3 (TIMP-3) was up-regulated. In tumor cells not deprived of NKX3.1 expression this gene still has a function which might differ from its role in prostate development and carcinogenesis. NKX3.1 knock-down altered the expression of genes highly relevant in prostate cancer cell proliferation and apoptosis. In LNCaP NKX3.1 most probably plays the role of an androgenregulated transcription factor whose down-regulation is paralleled by anti-proliferative and pro-apoptotic effects. Since NKX3.1 can regulate AR expression it may become a target for interference in hormone refractory prostate carcinoma."],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6151"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61271"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.rights.access","closedAccess"],["dc.subject","NKX3.1; prostate cancer; tumor suppressor; RNA interference"],["dc.subject.ddc","610"],["dc.title","Functional analysis of NKX3.1 in LNCaP prostate cancer cells by RNA interference"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details2007Journal Article [["dc.bibliographiccitation.firstpage","199"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","BJU International"],["dc.bibliographiccitation.lastpage","203"],["dc.bibliographiccitation.volume","100"],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Peter, Thomas"],["dc.contributor.author","Huenermund, Anika"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Seidlova-Wuttke, Dana"],["dc.contributor.author","Wuttke, Wolfgang"],["dc.contributor.author","Ringert, Rolf-Hermann"],["dc.contributor.author","Seseke, Florian"],["dc.date.accessioned","2018-11-07T11:00:51Z"],["dc.date.available","2018-11-07T11:00:51Z"],["dc.date.issued","2007"],["dc.description.abstract","To investigate the changes in expression underlying the marked reduction of tumour growth in vivo, by analysing the effect of Belamcanda chinensis extract (BCE) on LNCaP cells in vitro, as phytoestrogens are chemopreventive in prostate cancer, and in previous studies we examined the effects of the isoflavone tectorigenin isolated from B. chinensis on LNCaP prostate cancer cells, and a BCE consisting of 13 phytoestrogenic compounds on tumour-bearing nude mice. LNCaP cells were treated with 100, 400 or 1400 mu g/mL BCE; proliferation was assessed with an Alamar Blue assay. We used real-time reverse transcription-polymerase chain reaction to quantify mRNA expression of the androgen receptor (AR), the AR coactivator prostate derived Ets transcription factor (PDEF), NKX3.1, prostate specific antigen (PSA) and oestrogen receptor-beta (ER-beta) compared with the expression of the housekeeping gene porphobilinogen deaminase (PBGD). PSA secretion from LNCaP cells was measured and protein expression of the AR investigated by Western blot analysis. Concomitant with a marked decrease of tumour cell proliferation BCE down-regulated the expression of the AR, PDEF, NKX3.1 and PSA. In the same experiments, the expression of PBGD was unaltered, whereas ER-beta expression increased. Furthermore, AR protein and PSA secretion were markedly diminished after treatments with the BCE. BCE, comprising 13 different phytoestrogens, decreases the expression of the AR and its co-activator PDEF concomitant with diminished cell proliferation and PSA secretion. NKX3.1 expression was also reduced by BCE. We hypothesise that the positive effects of BCE are initiated by up-regulation of the ER-beta, a putative tumour-suppressor gene."],["dc.identifier.doi","10.1111/j.1464-410X.2007.06924.x"],["dc.identifier.isi","000247112400043"],["dc.identifier.pmid","17488304"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/51023"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Blackwell Publishing"],["dc.relation.issn","1464-4096"],["dc.title","Phytoestrogens from Belamcanda chinensis regulate the expression of steroid receptors and related cofactors in LNCaP prostate cancer cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2018Journal Article [["dc.bibliographiccitation.firstpage","16951"],["dc.bibliographiccitation.issue","24"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","16961"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Bremmer, Felix"],["dc.contributor.author","Jarry, Hubertus"],["dc.contributor.author","Unterkircher, Valerie"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Burfeind, Peter"],["dc.contributor.author","Radzun, Heinz-Joachim"],["dc.contributor.author","Ströbel, Philipp"],["dc.contributor.author","Thelen, Paul"],["dc.date.accessioned","2019-07-09T11:45:18Z"],["dc.date.available","2019-07-09T11:45:18Z"],["dc.date.issued","2018"],["dc.description.abstract","Novel treatments for castration-resistant prostate cancer (CRPC) such as abiraterone acetate (AA) or enzalutamide effectively target the androgen pathway to arrest aberrant signalling and cell proliferation. Testosterone is able to inhibit tumour cell growth in CRPC. Estrogen receptor-beta (ERβ) binds the testosteronemetabolites 3β-androstanediol and 3α-androstanediol in parallel to the canonical estradiol. In the prostate it is widely accepted that ERβ regulates estrogen signalling, mediating anti-proliferative effects. We used the prostate cancer cell lines LNCaP, PC-3, VCaP, and the non-neoplastic BPH-1. VCaP cells were treated with 1 nmol/L testosterone over 20 passages, yielding the cell line VCaPrev, sensitive to hormone therapies. In contrast, LNCaP cells were grown for more than 100 passages yielding a high passage therapy resistant cell line (hiPLNCaP). VCaP and hiPLNCaP cell lines were treated with 5 μmol/L AA for more than 20 passages, respectively, generating the AAtolerant- subtypes VCaPAA and hiPLNCaPAA. Cell lines were treated with testosterone, dihydrotestosterone (DHT), R1881, and the androgen-metabolites 3β-androstanediol and 3α-androstanediol. 3β-androstanediol or 3α-androstanediol significantly reduced proliferation in all cell lines except the BPH-1 and androgen receptor-negative PC-3 and markedly downregulated AR and estrogen receptor alpha (ERα). Whereas ERβ expression was increased in all cell lines except BPH-1 or PC-3. In summary, 3β-adiol or 3α-adiol, as well as DHT and R1881, significantly reduced tumour cell growth in CRPC cells. Thus, these compounds represent novel potential therapeutic approaches to overcome drug-resistance in CRPC, especially with regard to AR-V7 function in therapy resistance. Furthermore, these data confirm the tumour suppressor properties of ERβ in CRPC."],["dc.identifier.doi","10.18632/oncotarget.24763"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15104"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59207"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.subject.ddc","610"],["dc.title","Testosterone metabolites inhibit proliferation of castration- and therapy-resistant prostate cancer"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2008Journal Article [["dc.bibliographiccitation.firstpage","1606"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Molecular Endocrinology"],["dc.bibliographiccitation.lastpage","1621"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Grzmil, Michal"],["dc.contributor.author","Hemmerlein, Bernhard"],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Schweyer, Stefan"],["dc.contributor.author","Neesen, Juergen"],["dc.contributor.author","Bubendorf, Lukas"],["dc.contributor.author","Glass, Andrew G."],["dc.contributor.author","Jarry, Hubertus"],["dc.contributor.author","Auber, Bernd"],["dc.contributor.author","Burfeind, Peter"],["dc.date.accessioned","2018-11-07T11:13:42Z"],["dc.date.available","2018-11-07T11:13:42Z"],["dc.date.issued","2008"],["dc.description.abstract","In the present study, we demonstrate that leupaxin mRNA is overexpressed in prostate cancer (PCa) as compared with normal prostate tissue by using cDNA arrays and quantitative RT-PCR analyses. Moderate to strong expression of leupaxin protein was detected in approximately 22% of the PCa tissue sections analyzed, and leupaxin expression intensities were found to be significantly correlated with Gleason patterns/scores. In addition, different leupaxin expression levels were observed in PCa cell lines, and at the subcellular level, leupaxin was usually localized in focal adhesion sites. Furthermore, mutational analysis and transfection experiments of LNCaP cells using different green fluorescent protein-leupaxin constructs demonstrated that leupaxin contains functional nuclear export signals in its LD3 and LD4 motifs, thus shuttling between the cytoplasm and the nucleus. We could also demonstrate for the first time that leupaxin interacts with the androgen receptor in a ligand-dependent manner and serves as a transcriptional activator of this hormone receptor in PCa cells. Down-regulation of leupaxin expression using RNA interference in LNCaP cells resulted in a high rate of morphological changes, detachment, spontaneous apoptosis, and a reduction of prostate-specific antigen secretion. In contrast, knockdown of leupaxin expression in androgen-independent PC-3 and DU 145 cells induced a significant decrease of both the invasive capacity and motility. Our results therefore indicate that leupaxin could serve as a potential progression marker for a subset of PCa and may represent a novel coactivator of the androgen receptor. Leupaxin could function as a putative target for therapeutic interventions of a subset of advanced PCa."],["dc.identifier.doi","10.1210/me.2006-0546"],["dc.identifier.isi","000257144500008"],["dc.identifier.pmid","18451096"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6155"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/53958"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Endocrine Soc"],["dc.relation.issn","0888-8809"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Leupaxin, a novel coactivator of the androgen receptor, is expressed in prostate cancer and plays a role in adhesion and invasion of prostate carcinoma cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2006Journal Article [["dc.bibliographiccitation.firstpage","340"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","The Journal of Pathology"],["dc.bibliographiccitation.lastpage","349"],["dc.bibliographiccitation.volume","208"],["dc.contributor.author","Grzmil, M."],["dc.contributor.author","Kaulfuss, Silke"],["dc.contributor.author","Thelen, Paul"],["dc.contributor.author","Hemmerlein, Bernhard"],["dc.contributor.author","Schweyer, Stefan"],["dc.contributor.author","Obenauer, Silvia"],["dc.contributor.author","Kang, T. W."],["dc.contributor.author","Burfeind, Peter"],["dc.date.accessioned","2018-11-07T10:23:30Z"],["dc.date.available","2018-11-07T10:23:30Z"],["dc.date.issued","2006"],["dc.description.abstract","Recently, deregulated expression of the anti-apoptotic protein Bax inhibitor-1 (BI-1) has been shown in several human cancers. In this report, we show that BI-1 is expressed at various levels in six different human breast cancer cell lines. In order to investigate the function of BI-1 in oestrogen-dependent MCF-7, T-47D and oestrogen-independent MDA-MB-231 breast cancer cells, the RNA interference technique was used to knock down BI-1 expression specifically. Suppression of BI-1 expression caused a significant increase in spontaneous apoptosis in MDA-MB-231 cells, whereas MCF-7 and T-47D cells remained almost unaffected. Furthermore, BI-1 expression analysis using a cancer profiling array showed up-regulation of BI-1 expression in cancer samples of breast, uterus and ovary, whereas down-regulated BI-1 expression was identified in stomach, colon, kidney, lung and rectal cancer. In addition, immunohistochemical studies using a BI-1-specific antibody on human breast cancer specimens also revealed that BI-1 is expressed in the majority of cases. Moreover, to analyse whether BI-1 expression is oestrogen receptor-dependent, tumour cells were treated with oestradiol, ICI and tamoxifen: this showed no significant changes in BI-1 expression. Taken together, our results demonstrate that BI-1 expression is differentially deregulated in different cancers and that BI-1 plays an important role in preventing certain breast cancer cells from undergoing apoptosis. Thus, the development of novel therapeutic strategies based on targeting BI-I gene expression in breast cancer could be restricted to selected individual cancer types. Copyright (c) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd."],["dc.identifier.doi","10.1002/path.1902"],["dc.identifier.isi","000235374500003"],["dc.identifier.pmid","16353131"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42468"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","John Wiley & Sons Ltd"],["dc.relation.issn","0022-3417"],["dc.title","Expression and functional analysis of Bax inhibitor-I in human breast cancer cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS