Now showing 1 - 6 of 6
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","1083"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.lastpage","1099"],["dc.bibliographiccitation.volume","63"],["dc.contributor.author","Menzfeld, Christiane"],["dc.contributor.author","John, Michael"],["dc.contributor.author","van Rossum, Denise"],["dc.contributor.author","Regen, Tommy"],["dc.contributor.author","Scheffel, Joerg"],["dc.contributor.author","Janova, Hana"],["dc.contributor.author","Goetz, Alexander A."],["dc.contributor.author","Ribes, Sandra"],["dc.contributor.author","Nau, Roland"],["dc.contributor.author","Borisch, Angela"],["dc.contributor.author","Boutin, Philippe"],["dc.contributor.author","Neumann, Konstantin"],["dc.contributor.author","Bremes, Vanessa"],["dc.contributor.author","Wienands, Juergen"],["dc.contributor.author","Reichardt, Holger Michael"],["dc.contributor.author","Luehder, Fred"],["dc.contributor.author","Tischner, Denise"],["dc.contributor.author","Waetzig, Vicky"],["dc.contributor.author","Herdegen, Thomas"],["dc.contributor.author","Teismann, Peter"],["dc.contributor.author","Greig, Iain"],["dc.contributor.author","Mueller, Michael"],["dc.contributor.author","Pukrop, Tobias"],["dc.contributor.author","Mildner, Alexander"],["dc.contributor.author","Kettenmann, Helmut"],["dc.contributor.author","Brueck, Wolfgang"],["dc.contributor.author","Prinz, Marco R."],["dc.contributor.author","Rotshenker, Shlomo"],["dc.contributor.author","Weber, Martin S."],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.date.accessioned","2018-11-07T09:56:53Z"],["dc.date.available","2018-11-07T09:56:53Z"],["dc.date.issued","2015"],["dc.description.abstract","The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions. GLIA 2015;63:1083-1099"],["dc.identifier.doi","10.1002/glia.22803"],["dc.identifier.isi","000353244400011"],["dc.identifier.pmid","25731696"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/37056"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","1098-1136"],["dc.relation.issn","0894-1491"],["dc.title","Tyrphostin AG126 Exerts Neuroprotection in CNS Inflammation by a Dual Mechanism"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Conference Abstract
    [["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.volume","61"],["dc.contributor.author","Janova, Hana"],["dc.contributor.author","Regen, Tommy"],["dc.contributor.author","van Rossum, Denise"],["dc.contributor.author","Ribes, Sandra"],["dc.contributor.author","Goetz, Alexander A."],["dc.contributor.author","Nau, R."],["dc.contributor.author","Brueck, Wolfgang"],["dc.contributor.author","Hanisch, U-K"],["dc.date.accessioned","2018-11-07T09:23:23Z"],["dc.date.available","2018-11-07T09:23:23Z"],["dc.date.issued","2013"],["dc.format.extent","S181"],["dc.identifier.isi","000320408400581"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/29563"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.conference","11th European Meeting on Glial Cell Function in Health and Disease"],["dc.relation.eventlocation","Berlin, GERMANY"],["dc.relation.issn","0894-1491"],["dc.title","CD14 AS A KEY REGULATOR OF TLR-MEDIATED RESPONSES OF MICROGLIA"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2011Conference Abstract
    [["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.volume","59"],["dc.contributor.author","Regen, Tommy"],["dc.contributor.author","van Rossum, Denise"],["dc.contributor.author","Scheffel, Joerg"],["dc.contributor.author","Kastriti, Maria-Eleni"],["dc.contributor.author","Revelo, Natalia H."],["dc.contributor.author","Janova, Hana"],["dc.contributor.author","Borisch, Angela"],["dc.contributor.author","Prinz, Marco R."],["dc.contributor.author","Brueck, Wolfgang"],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.date.accessioned","2018-11-07T08:51:34Z"],["dc.date.available","2018-11-07T08:51:34Z"],["dc.date.issued","2011"],["dc.format.extent","S148"],["dc.identifier.isi","000294178900582"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/21965"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Malden"],["dc.relation.issn","0894-1491"],["dc.title","CD14 AND TRIF GOVERN DISTINCT RESPONSIVENESS AND RESPONSES IN MOUSE MICROGLIAL TLR4 CHALLENGES BY STRUCTURAL VARIANTS OF LPS"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","16"],["dc.bibliographiccitation.issue","1-2"],["dc.bibliographiccitation.journal","Journal of Neuroimmunology"],["dc.bibliographiccitation.lastpage","23"],["dc.bibliographiccitation.volume","252"],["dc.contributor.author","Ribes, Sandra"],["dc.contributor.author","Adam, Nina"],["dc.contributor.author","Schuetze, Sandra"],["dc.contributor.author","Regen, Tommy"],["dc.contributor.author","Redlich, Sandra"],["dc.contributor.author","Janova, Hana"],["dc.contributor.author","Borisch, Angela"],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.contributor.author","Nau, Roland"],["dc.date.accessioned","2018-11-07T09:03:27Z"],["dc.date.available","2018-11-07T09:03:27Z"],["dc.date.issued","2012"],["dc.description.abstract","Increasing the phagocytic activity of microglia could improve the resistance of immunocompromised patients to CNS infections. We studied the microglial responses upon stimulation with the Nod2 ligand muramyl dipeptide (MDP) alone or in combination with a TLR1/2, 3 or 4 agonist. MDP caused a mild release of NO, but induced neither a significant release of pro-inflammatory cytokines nor an expression of molecules associated with professional antigen presentation. Using the Escherichia coli K1 model, microglial pre-stimulation with MDP enhanced bacterial phagocytosis which was strengthened on TLR-pre-stimulated cells. Dual pre-stimulation of Nod2 and TLR1/2 or 4 caused maximal phagocytosis and intracellular killing. (c) 2012 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.jneuroim.2012.07.012"],["dc.identifier.isi","000311132500002"],["dc.identifier.pmid","22889567"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24904"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.relation.issn","1872-8421"],["dc.relation.issn","0165-5728"],["dc.title","The nucleotide-binding oligomerization domain-containing-2 ligand muramyl dipeptide enhances phagocytosis and intracellular killing of Escherichia coli K1 by Toll-like receptor agonists in microglial cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","635"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.lastpage","649"],["dc.bibliographiccitation.volume","64"],["dc.contributor.author","Janova, Hana"],["dc.contributor.author","Böttcher, Chotima"],["dc.contributor.author","Holtman, Inge R."],["dc.contributor.author","Regen, Tommy"],["dc.contributor.author","Rossum, Denise van"],["dc.contributor.author","Götz, Alexander"],["dc.contributor.author","Ernst, Anne-Sophie"],["dc.contributor.author","Fritsche, Christin"],["dc.contributor.author","Gertig, Ulla"],["dc.contributor.author","Saiepour, Nasrin"],["dc.contributor.author","Gronke, Konrad"],["dc.contributor.author","Wrzos, Claudia"],["dc.contributor.author","Ribes, Sandra"],["dc.contributor.author","Rolfes, Simone"],["dc.contributor.author","Weinstein, Jonathan"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.contributor.author","Pukrop, Tobias"],["dc.contributor.author","Kopatz, Jens"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Salinas-Riester, Gabriela"],["dc.contributor.author","Weber, Martin S."],["dc.contributor.author","Prinz, Marco"],["dc.contributor.author","Brück, Wolfgang"],["dc.contributor.author","Eggen, Bart J. L."],["dc.contributor.author","Boddeke, Hendrikus W. G. M."],["dc.contributor.author","Priller, Josef"],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.date.accessioned","2017-09-07T11:45:34Z"],["dc.date.available","2017-09-07T11:45:34Z"],["dc.date.issued","2016"],["dc.description.abstract","Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon β-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced CNS responses to bacterial infection, traumatic and ischemic injuries, since CD14 deficiency causes either hypo- or hyperinflammation, insufficient or exaggerated immune cell recruitment or worsened stroke outcomes. While CD14 orchestrates functions of TLR4 and related immune receptors, it is itself regulated by TLR and non-TLR systems to thereby fine-tune microglial damage-sensing capacity upon infectious and non-infectious CNS challenges."],["dc.identifier.doi","10.1002/glia.22955"],["dc.identifier.gro","3150405"],["dc.identifier.pmid","26683584"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7166"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.issn","0894-1491"],["dc.title","CD14 is a key organizer of microglial responses to CNS infection and injury"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","1176"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.lastpage","1185"],["dc.bibliographiccitation.volume","65"],["dc.contributor.author","Doering, Christin"],["dc.contributor.author","Regen, Tommy"],["dc.contributor.author","Gertig, Ulla"],["dc.contributor.author","van Rossum, Denise"],["dc.contributor.author","Winkler, Anne"],["dc.contributor.author","Saiepour, Nasrin"],["dc.contributor.author","Brueck, Wolfgang"],["dc.contributor.author","Hanisch, Uwe-Karsten"],["dc.contributor.author","Janova, Hana"],["dc.date.accessioned","2018-11-07T10:22:27Z"],["dc.date.available","2018-11-07T10:22:27Z"],["dc.date.issued","2017"],["dc.description.abstract","Microglia as principle innate immune cells of the central nervous system (CNS) are the first line of defense against invading pathogens. They are capable of sensing infections through diverse receptors, such as Toll-like receptor 4 (TLR4). This receptor is best known for its ability to recognize bacterial lipopolysaccharide (LPS), a causative agent of gram-negative sepsis and septic shock. A putative, naturally occurring antagonist of TLR4 derives from the photosynthetic bacterium Rhodobacter sphaeroides. However, the antagonistic potential of R. sphaeroides LPS (Rs-LPS) is no universal feature, since several studies suggested agonistic rather than antagonistic actions of this molecule depending on the investigated mammalian species. Here we show the agonistic versus antagonistic potential of Rs-LPS in primary mouse microglia. We demonstrate that Rs-LPS efficiently induces the release of cytokines and chemokines, which depends on TLR4, MyD88, and TRIF, but not CD14. Furthermore, Rs-LPS is able to regulate the phagocytic capacity of microglia as agonist, while it antagonizes Re-LPS-induced MHC I expression. Finally, to our knowledge, we are the first to provide in vivo evidence for an agonistic potential of Rs-LPS, as it efficiently triggers the recruitment of peripheral immune cells to the endotoxin-challenged CNS. Together, our results argue for a versatile and complex organization of the microglial TLR4 system, which specifically translates exogenous signals into cellular functions. Importantly, as demonstrated here for microglia, the antagonistic potential of Rs-LPS needs to be considered with caution, as reactions to Rs-LPS not only differ by cell type, but even by function within one cell type."],["dc.description.sponsorship","German Research Council (DFG) [SFB/TRR43, FOR1336]"],["dc.identifier.doi","10.1002/glia.23151"],["dc.identifier.isi","000401345400011"],["dc.identifier.pmid","28471051"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42277"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley"],["dc.relation.issn","1098-1136"],["dc.relation.issn","0894-1491"],["dc.title","A presumed antagonistic LPS identifies distinct functional organization of TLR4 in mouse microglia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS