Now showing 1 - 3 of 3
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","11471"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","International journal of clinical and experimental pathology"],["dc.bibliographiccitation.lastpage","11479"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Ahmad, Shakil"],["dc.contributor.author","Cameron, Silke"],["dc.contributor.author","Naz, Naila"],["dc.contributor.author","Moriconi, Federico"],["dc.date.accessioned","2019-07-10T08:12:06Z"],["dc.date.available","2019-07-10T08:12:06Z"],["dc.date.issued","2017"],["dc.description.abstract","Background: The liver plays a key role in iron homeostasis during injury and hypoxia. Methods: For induction of liver injury, thioacetamide (TAA) was administered intraperitoneally to male Sprague Dawley rats. Animals were sacrificed at 0, 1, 3, 6, 12, 24, 48, 72 and 96 h. Serum, liver, spleen and heart tissues were collected from control and TAA-treated rats. Tissue sections were prepared for immunohistochemical studies. Nuclear and cytoplasmic proteins were isolated for Western blot analysis. Results: Hypoxia inducible factor (HIF)-1α and ED1 positive cells accumulated around the portal field and the interlobular space within 12 hours after TAA administration. Accordingly, Western blot analysis of liver tissue showed an early increase of HIF1α followed by a decrease at 48 h to 96 h. For Erythropoietin (EPO), as well as for HIF1- and -2α, a time-dependent translocation was observed from the cytoplasmic to the nuclear compartment. Conclusion: Our data suggest that the TAA-induced acute liver damage generates HIF-1α dependent rescue mechanisms with translocation of EPO from the cytoplasmic to the nuclear compartment. Enhanced iron transport into the liver could be necessary for increased metabolic activities during repair processes."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15018"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/60864"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation.issn","1936-2625"],["dc.rights.access","openAccess"],["dc.subject","Thioacetamide (TAA); acute phase injury; hypoxia inducible factor (HIF); erythropoietin (EPO)"],["dc.subject.ddc","610"],["dc.title","Mediators of hypoxia in a rat model of sterile-induced acute liver injury"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","637"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","International Journal of Molecular Sciences"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Sultan, Sadaf"],["dc.contributor.author","Ahmad, Shakil"],["dc.contributor.author","Rave-Fraenk, Margret"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.contributor.author","Hess, Clemens Friedrich"],["dc.contributor.author","Christiansen, Hans"],["dc.contributor.author","Cameron, Silke"],["dc.date.accessioned","2018-11-07T10:14:35Z"],["dc.date.available","2018-11-07T10:14:35Z"],["dc.date.issued","2016"],["dc.description.abstract","Previously, we showed that lipocalin2 (LCN2) serum levels increased after liver irradiation and during acute-phase conditions. Here, we evaluate LCN2 expression and serum levels after single-dose lung irradiation with 25 Gy, percutaneously administered to the lung of randomly-paired male Wistar rats. Due to the concave anatomy of the lung recesses, the irradiation field included the upper part of the liver. No rat died due to irradiation. In control tissue, lung immunohistochemistry showed a high constitutive expression of LCN2+ granulocytes. LCN2 mRNA levels in lung tissue increased up to 24 h (9 +/- 2.3-fold) after irradiation. However, serum LCN2 levels remained undetectable after lung irradiation. LCN2 expression in the upper part of the liver increased up to 4.2-fold after lung irradiation, but the lower liver showed an early decrease. Acute-phase cytokines (IL-1 beta and TNF-beta) showed a significant increase on transcript level in both lung and upper liver, whilst the lower liver did not show any considerable increase. In conclusion, constitutive expression of LCN2 in local immune cells demonstrates its local role during stress conditions in the lung. The absence of LCN2 in the serum strengthens our previous findings that the liver is the key player in secreting LCN2 during stress conditions with liver involvement."],["dc.description.sponsorship","Open-Access Publikationsfonds 2016"],["dc.identifier.doi","10.3390/ijms17050637"],["dc.identifier.isi","000378791400031"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13241"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40644"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Mdpi Ag"],["dc.relation.issn","1422-0067"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Induction of Lipocalin2 in a Rat Model of Lung Irradiation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2013Journal Article
    [["dc.bibliographiccitation.artnumber","353106"],["dc.bibliographiccitation.journal","BioMed Research International"],["dc.contributor.author","Naz, Naila"],["dc.contributor.author","Ahmad, Shakil"],["dc.contributor.author","Cameron, Silke"],["dc.contributor.author","Moriconi, Federico"],["dc.contributor.author","Rave-Fraenk, Margret"],["dc.contributor.author","Christiansen, Hans"],["dc.contributor.author","Hess, Clemens Friedrich"],["dc.contributor.author","Ramadori, Giuliano"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.date.accessioned","2018-11-07T09:29:26Z"],["dc.date.available","2018-11-07T09:29:26Z"],["dc.date.issued","2013"],["dc.description.abstract","The current study aimed to investigate radiation-induced regulation of iron proteins including ferritin subunits in rats. Rat livers were selectively irradiated in vivo at 25 Gy. This dose can be used to model radiation effects to the liver without inducing overt radiation-induced liver disease. Sham-irradiated rats served as controls. Isolated hepatocytes were irradiated at 8 Gy. Ferritin light polypeptide (FTL) was detectable in the serum of sham-irradiated rats with an increase after irradiation. Liver irradiation increased hepatic protein expression of both ferritin subunits. A rather early increase (3 h) was observed for hepatic TfR1 and Fpn-1 followed by a decrease at 12 h. The increase in TfR2 persisted over the observed time. Parallel to the elevation of AST levels, a significant increase (24 h) in hepatic iron content was measured. Complete blood count analysis showed a significant decrease in leukocyte number with an early increase in neutrophil granulocytes and a decrease in lymphocytes. In vitro, a significant increase in ferritin subunits at mRNA level was detected after irradiation which was further induced with a combination treatment of irradiation and acute phase cytokine. Irradiation can directly alter the expression of ferritin subunits and this response can be strongly influenced by radiation-induced proinflammatory cytokines. FTL can be used as a serum marker for early phase radiation-induced liver damage."],["dc.description.sponsorship","DFG [MA-5488/2-1]"],["dc.identifier.doi","10.1155/2013/353106"],["dc.identifier.isi","000328832300001"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10734"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31028"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Hindawi Publishing Corporation"],["dc.relation.issn","2314-6141"],["dc.relation.issn","2314-6133"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Differential Regulation of Ferritin Subunits and Iron Transport Proteins: An Effect of Targeted Hepatic X-Irradiation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS