Options
Kilisch, Markus
Loading...
Preferred name
Kilisch, Markus
Official Name
Kilisch, Markus
Alternative Name
Kilisch, M.
Now showing 1 - 5 of 5
2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","5715"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Stoldt, Stefan"],["dc.contributor.author","Dybkov, Olexandr"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Cruz-Zaragoza, Luis Daniel"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2021-10-01T09:57:33Z"],["dc.date.available","2021-10-01T09:57:33Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41467-021-26016-1"],["dc.identifier.pii","26016"],["dc.identifier.pmid","34588454"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89863"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/348"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/157"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Ficner (Molecular Structural Biology)"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 4.0"],["dc.title","Mapping protein interactions in the active TOM-TIM23 supercomplex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","eaaz1436"],["dc.bibliographiccitation.issue","647"],["dc.bibliographiccitation.journal","Science Signaling"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Menzel, Julia"],["dc.contributor.author","Kownatzki-Danger, Daniel"],["dc.contributor.author","Tokar, Sergiy"],["dc.contributor.author","Ballone, Alice"],["dc.contributor.author","Unthan-Fechner, Kirsten"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Mori, Mattia"],["dc.contributor.author","Ottmann, Christian"],["dc.contributor.author","Shattock, Michael J."],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2021-04-14T08:32:51Z"],["dc.date.available","2021-04-14T08:32:51Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1126/scisignal.aaz1436"],["dc.identifier.pmid","32873725"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84038"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/68"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/368"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/126"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A07: Rolle der TRC40-Maschinerie im Proteostase-Netzwerk von Kardiomyozyten"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation.eissn","1937-9145"],["dc.relation.issn","1945-0877"],["dc.relation.workinggroup","RG Lehnart"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Lenz"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.title","14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article [["dc.bibliographiccitation.firstpage","jcs232835"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","133"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Mayer, Simone"],["dc.contributor.author","Mitkovski, Miso"],["dc.contributor.author","Roehse, Heiko"],["dc.contributor.author","Hentrich, Jennifer"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Papadopoulos, Theofilos"],["dc.date.accessioned","2020-12-10T18:41:54Z"],["dc.date.available","2020-12-10T18:41:54Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1242/jcs.232835"],["dc.identifier.eissn","1477-9137"],["dc.identifier.issn","0021-9533"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77720"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","A GTPase-induced switch in phospholipid affinity of collybistin contributes to synaptic gephyrin clustering"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","831"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","842"],["dc.bibliographiccitation.volume","129"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Lytovchenko, Olga"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Bertinetti, Daniela"],["dc.contributor.author","Schwappach, Blanche"],["dc.date.accessioned","2017-09-07T11:54:38Z"],["dc.date.available","2017-09-07T11:54:38Z"],["dc.date.issued","2016"],["dc.description.abstract","The transport of the K+ channels TASK-1 and TASK-3 (also known as KCNK3 and KCNK9, respectively) to the cell surface is controlled by the binding of 14-3-3 proteins to a trafficking control region at the extreme C-terminus of the channels. The current model proposes that phosphorylation-dependent binding of 14-3-3 sterically masks a COPI-binding motif. However, the direct effects of phosphorylation on COPI binding and on the binding parameters of 14-3-3 isoforms are still unknown. We find that phosphorylation of the trafficking control region prevents COPI binding even in the absence of 14-3-3, and we present a quantitative analysis of the binding of all human 14-3-3 isoforms to the trafficking control regions of TASK-1 and TASK-3. Surprisingly, the affinities of 14-3-3 proteins for TASK-1 are two orders of magnitude lower than for TASK-3. Furthermore, we find that phosphorylation of a second serine residue in the C-terminus of TASK-1 inhibits 14-3-3 binding. Thus, phosphorylation of the trafficking control region can stimulate or inhibit transport of TASK-1 to the cell surface depending on the target serine residue. Our findings indicate that control of TASK-1 trafficking by COPI, kinases, phosphatases and 14-3-3 proteins is highly dynamic."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.1242/jcs.180182"],["dc.identifier.gro","3141729"],["dc.identifier.isi","000370240900016"],["dc.identifier.pmid","26743085"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12874"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/424"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/100"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A07: Rolle der TRC40-Maschinerie im Proteostase-Netzwerk von Kardiomyozyten"],["dc.relation.eissn","1477-9137"],["dc.relation.issn","0021-9533"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2015Review [["dc.bibliographiccitation.firstpage","1105"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Pflügers Archiv European Journal of Physiology"],["dc.bibliographiccitation.lastpage","1120"],["dc.bibliographiccitation.volume","467"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Lytovchenko, Olga"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Renigunta, Vijay"],["dc.contributor.author","Daut, Jürgen"],["dc.date.accessioned","2017-09-07T11:44:25Z"],["dc.date.available","2017-09-07T11:44:25Z"],["dc.date.issued","2015"],["dc.description.abstract","The intracellular transport of membrane proteins is controlled by trafficking signals: Short peptide motifs that mediate the contact with COPI, COPII or various clathrin-associated coat proteins. In addition, many membrane proteins interact with accessory proteins that are involved in the sorting of these proteins to different intracellular compartments. In the K-2P channels, TASK-1 and TASK-3, the influence of protein-protein interactions on sorting decisions has been studied in some detail. Both TASK paralogues interact with the adaptor protein 14-3-3; TASK-1 interacts, in addition, with the adaptor protein p11 (S100A10) and the endosomal SNARE protein syntaxin-8. The role of these interacting proteins in controlling the intracellular traffic of the channels and the underlying molecular mechanisms are summarised in this review. In the case of 14-3-3, the interacting protein masks a retention signal in the C-terminus of the channel; in the case of p11, the interacting protein carries a retention signal that localises the channel to the endoplasmic reticulum; and in the case of syntaxin-8, the interacting protein carries an endocytosis signal that complements an endocytosis signal of the channel. These examples illustrate some of the mechanisms by which interacting proteins may determine the itinerary of a membrane protein within a cell and suggest that the intracellular traffic of membrane proteins may be adapted to the specific functions of that protein by multiple protein-protein interactions."],["dc.identifier.doi","10.1007/s00424-014-1672-2"],["dc.identifier.gro","3141914"],["dc.identifier.isi","000352847000019"],["dc.identifier.pmid","25559843"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2478"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft [FOR 1086, TP7, TP9, SFB 593, TP4]"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Springer"],["dc.relation.eissn","1432-2013"],["dc.relation.issn","0031-6768"],["dc.title","The role of protein-protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS