Now showing 1 - 2 of 2
  • 2016Journal Article
    [["dc.bibliographiccitation.journal","Chem. Sci."],["dc.contributor.author","Rost, U."],["dc.contributor.author","Steinem, Claudia"],["dc.contributor.author","Diederichsen, U."],["dc.date.accessioned","2016-06-09T11:12:42Z"],["dc.date.accessioned","2021-10-27T13:12:22Z"],["dc.date.available","2016-06-09T11:12:42Z"],["dc.date.available","2021-10-27T13:12:22Z"],["dc.date.issued","2016"],["dc.description.abstract","Transmembrane b-peptide helices and their association in lipid membranes are still widely unexplored. We designed and synthesized transmembrane b-peptides harboring different numbers of D-b3-glutamine residues (hGln) by solid phase peptide synthesis. By means of circular dichroism spectroscopic measurements, the secondary structure of the b-peptides reconstituted into unilamellar vesicles was determined to be similar to a right-handed 314-helix. Fluorescence spectroscopy using D-b3-tryptophan residues strongly suggested a transmembrane orientation. Two or three hGln served as recognition units between the helices to allow helix–helix assembly driven by hydrogen bond formation. The association state of the transmembrane b-peptides as a function of the number of hGln residues was investigated by fluorescence resonance energy transfer (FRET). Therefore, two fluorescence probes (NBD, TAMRA) were covalently attached to the side chains of the transmembrane b-peptide helices. The results clearly demonstrate that only b-peptides with hGln as recognition units assemble into oligomers, presumably trimers. Temperature dependent FRET experiments further show that the strength of the helix–helix association is a function of the number of hGln residues in the helix."],["dc.identifier.doi","10.1039/C6SC01147K"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13340"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91685"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation.issn","2041-6539"],["dc.relation.issn","2041-6520"],["dc.relation.orgunit","Fakultät für Chemie"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject","b-peptides;"],["dc.title","β-Glutamine-mediated self-association of transmembrane β-peptides within lipid bilayers"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","143"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Molecular Cell Biology"],["dc.bibliographiccitation.lastpage","153"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Menck, Kerstin"],["dc.contributor.author","Scharf, Christian"],["dc.contributor.author","Bleckmann, Annalen"],["dc.contributor.author","Dyck, Lydia"],["dc.contributor.author","Rost, Ulrike"],["dc.contributor.author","Wenzel, Dirk"],["dc.contributor.author","Dhople, Vishnu M."],["dc.contributor.author","Siam, Laila"],["dc.contributor.author","Pukrop, Tobias"],["dc.contributor.author","Binder, Claudia"],["dc.contributor.author","Klemm, Florian"],["dc.date.accessioned","2018-11-07T09:58:48Z"],["dc.date.available","2018-11-07T09:58:48Z"],["dc.date.issued","2015"],["dc.description.abstract","Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologousand heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN."],["dc.description.sponsorship","Deutsche Krebshilfe [109615]; DFG [BI 703/3-2]; eBIO MetastaSys (BMBF)"],["dc.identifier.doi","10.1093/jmcb/mju047"],["dc.identifier.isi","000355232100006"],["dc.identifier.pmid","25503107"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13819"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/37445"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","1759-4685"],["dc.relation.issn","1674-2788"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS