Now showing 1 - 10 of 36
  • 2019Journal Article Discussion
    [["dc.bibliographiccitation.firstpage","860"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Nature Photonics"],["dc.bibliographiccitation.lastpage","865"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Ghosh, Arindam"],["dc.contributor.author","Sharma, Akshita"],["dc.contributor.author","Chizhik, Alexey I."],["dc.contributor.author","Isbaner, Sebastian"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Tsukanov, Roman"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Karedla, Narain"],["dc.contributor.author","Enderlein, Jörg"],["dc.date.accessioned","2020-12-10T18:09:58Z"],["dc.date.available","2020-12-10T18:09:58Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1038/s41566-019-0510-7"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73814"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/21"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.workinggroup","RG Enderlein"],["dc.title","Graphene-based metal-induced energy transfer for sub-nanometre optical localization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","letter_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.issue","36"],["dc.bibliographiccitation.journal","Nanotechnology"],["dc.bibliographiccitation.volume","33"],["dc.contributor.affiliation","Ghosh, Subhabrata;"],["dc.contributor.affiliation","Hollingsworth, Jennifer A;"],["dc.contributor.affiliation","Gallea, Jose Ignacio;"],["dc.contributor.affiliation","Majumder, Somak;"],["dc.contributor.affiliation","Enderlein, Jörg;"],["dc.contributor.affiliation","Chizhik, Alexey I;"],["dc.contributor.author","Ghosh, Subhabrata"],["dc.contributor.author","Hollingsworth, Jennifer"],["dc.contributor.author","Gallea, Jose Ignacio"],["dc.contributor.author","Majumder, Somak"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Chizhik, Alexey"],["dc.date.accessioned","2022-06-01T09:39:18Z"],["dc.date.available","2022-06-01T09:39:18Z"],["dc.date.issued","2022"],["dc.date.updated","2022-06-17T02:42:41Z"],["dc.description.abstract","Abstract We report on proof of principle measurements of a concept for a super-resolution imaging method that is based on excitation field density-dependent lifetime modulation of semiconductor nanocrystals. The prerequisite of the technique is access to semiconductor nanocrystals with emission lifetimes that depend on the excitation intensity. Experimentally, the method requires a confocal microscope with fluorescence-lifetime measurement capability that makes it easily accessible to a broad optical imaging community. We demonstrate with single particle imaging that the method allows one to achieve a spatial resolution of the order of several tens of nanometers at moderate fluorescence excitation intensity."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659"],["dc.description.sponsorship","H2020 European Research Council https://doi.org/10.13039/100010663"],["dc.description.sponsorship","Office of Energy Efficiency and Renewable Energy https://doi.org/10.13039/100006134"],["dc.identifier.doi","10.1088/1361-6528/ac73a2"],["dc.identifier.pmid","35617874"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/108438"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/491"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-572"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1361-6528"],["dc.relation.issn","0957-4484"],["dc.relation.workinggroup","RG Enderlein"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Excited state lifetime modulation in semiconductor nanocrystals for super-resolution imaging"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","1472"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry Letters"],["dc.bibliographiccitation.lastpage","1475"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Schneider, Falk"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Chizhik, Alexey I."],["dc.date.accessioned","2018-04-23T11:48:54Z"],["dc.date.available","2018-04-23T11:48:54Z"],["dc.date.issued","2017"],["dc.description.abstract","Precise knowledge of the quantum yield is important for many fluorescence–spectroscopic techniques, for example, for Förster resonance energy transfer. However, to measure it for emitters in a complex environment and at low concentrations is far from being trivial. Using a plasmonic nanocavity, we measure the absolute quantum yield value of lipid-conjugated dyes incorporated into a supported lipid bilayer. We show that for both hydrophobic and hydrophilic molecules the quantum yield of dyes inside the lipid bilayer strongly differs from its value in aqueous solution. This finding is of particular importance for all fluorescence–spectroscopic studies involving lipid bilayers, such as protein–protein or protein–lipid interactions in membranes or direct fluorescence–spectroscopic measurements of membrane physical properties."],["dc.identifier.doi","10.1021/acs.jpclett.7b00422"],["dc.identifier.gro","3142101"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13599"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","1948-7185"],["dc.title","Quantum Yield Measurements of Fluorophores in Lipid Bilayers Using a Plasmonic Nanocavity"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018-05-28Journal Article
    [["dc.bibliographiccitation.artnumber","204201"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","The Journal of Chemical Physics"],["dc.bibliographiccitation.volume","148"],["dc.contributor.author","Karedla, Narain"],["dc.contributor.author","Chizhik, Anna M."],["dc.contributor.author","Stein, Simon C"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Chizhik, Alexey I."],["dc.contributor.author","Enderlein, Jörg"],["dc.date.accessioned","2020-05-29T09:29:43Z"],["dc.date.available","2020-05-29T09:29:43Z"],["dc.date.issued","2018-05-28"],["dc.description.abstract","Our paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension. We have used Metal-Induced Energy Transfer in the past for localizing fluorescent emitters with nanometer accuracy along the optical axis of a microscope. The combination of smMIET with single-molecule localization based super-resolution microscopy that provides nanometer lateral localization accuracy offers the prospect of achieving isotropic nanometer localization accuracy in all three spatial dimensions. We give a thorough theoretical explanation and analysis of smMIET, describe its experimental requirements, also in its combination with lateral single-molecule localization techniques, and present first proof-of-principle experiments using dye molecules immobilized on top of a silica spacer, and of dye molecules embedded in thin polymer films."],["dc.identifier.doi","10.1063/1.5027074"],["dc.identifier.pmid","29865842"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66012"],["dc.language.iso","en"],["dc.relation.eissn","1089-7690"],["dc.relation.issn","0021-9606"],["dc.title","Three-dimensional single-molecule localization with nanometer accuracy using Metal-Induced Energy Transfer (MIET) imaging"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","11839"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","ACS Nano"],["dc.bibliographiccitation.lastpage","11846"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Chizhik, Anna M."],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Pfaff, Janine"],["dc.contributor.author","Karedla, Narain"],["dc.contributor.author","Chizhik, Alexey I."],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Kehlenbach, Ralph H."],["dc.contributor.author","Enderlein, Jörg"],["dc.date.accessioned","2018-04-23T11:48:40Z"],["dc.date.available","2018-04-23T11:48:40Z"],["dc.date.issued","2017"],["dc.description.abstract","The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2β and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively. Using MIET imaging, we reconstruct the 3D profile of the nuclear envelope over the whole basal area, with an axial resolution of a few nanometers. This result demonstrates that optical microscopy can achieve nanometer axial resolution in biological samples and without recourse to complex interferometric approaches."],["dc.identifier.doi","10.1021/acsnano.7b04671"],["dc.identifier.gro","3142097"],["dc.identifier.pmid","28921961"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13555"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/13"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P07: Dynamik von Proteinen der inneren Kernmembran"],["dc.relation.issn","1936-0851"],["dc.relation.workinggroup","RG Kehlenbach (Nuclear Transport)"],["dc.title","Three-Dimensional Reconstruction of Nuclear Envelope Architecture Using Dual-Color Metal-Induced Energy Transfer Imaging"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Communications Biology"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Andresen, Martin"],["dc.contributor.author","Jensen, Nickels"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Chizhik, Alexey I."],["dc.date.accessioned","2021-03-05T08:58:32Z"],["dc.date.available","2021-03-05T08:58:32Z"],["dc.date.issued","2020"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s42003-020-01316-2"],["dc.identifier.pmid","33128009"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17780"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80175"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/87"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-393"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","2399-3642"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.workinggroup","RG Enderlein"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","4788"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","ACS Photonics"],["dc.bibliographiccitation.lastpage","4800"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Kuo, Yung"],["dc.contributor.author","Li, Jack"],["dc.contributor.author","Michalet, Xavier"],["dc.contributor.author","Chizhik, Alexey"],["dc.contributor.author","Meir, Noga"],["dc.contributor.author","Bar-Elli, Omri"],["dc.contributor.author","Chan, Emory"],["dc.contributor.author","Oron, Dan"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Weiss, Shimon"],["dc.date.accessioned","2020-12-10T18:09:16Z"],["dc.date.available","2020-12-10T18:09:16Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1021/acsphotonics.8b00617"],["dc.identifier.eissn","2330-4022"],["dc.identifier.issn","2330-4022"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73590"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","3320"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Nano Letters"],["dc.bibliographiccitation.lastpage","3326"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Baronsky, Thilo"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Brückner, Bastian Rouven"],["dc.contributor.author","Schäfer, Jonas"],["dc.contributor.author","Karedla, Narain"],["dc.contributor.author","Isbaner, Sebastian"],["dc.contributor.author","Hähnel, Dirk"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Chizhik, Alexey I."],["dc.date.accessioned","2018-04-23T11:48:51Z"],["dc.date.available","2018-04-23T11:48:51Z"],["dc.date.issued","2017"],["dc.description.abstract","The biological process of the epithelial-to-mesenchymal transition (EMT) allows epithelial cells to enhance their migratory and invasive behavior and plays a key role in embryogenesis, fibrosis, wound healing, and metastasis. Among the multiple biochemical changes from an epithelial to a mesenchymal phenotype, the alteration of cellular dynamics in cell–cell as well as cell–substrate contacts is crucial. To determine these variations over the whole time scale of the EMT, we measure the cell–substrate distance of epithelial NMuMG cells during EMT using our newly established metal-induced energy transfer (MIET) microscopy, which allows one to achieve nanometer axial resolution. We show that, in the very first hours of the transition, the cell–substrate distance increases substantially, but later in the process after reaching the mesenchymal state, this distance is reduced again to the level of untreated cells. These findings relate to a change in the number of adhesion points and will help to better understand remodeling processes associated with wound healing, embryonic development, cancer progression, or tissue regeneration."],["dc.identifier.doi","10.1021/acs.nanolett.7b01558"],["dc.identifier.gro","3142100"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13588"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation.issn","1530-6984"],["dc.title","Cell–Substrate Dynamics of the Epithelial-to-Mesenchymal Transition"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Book Chapter
    [["dc.bibliographiccitation.firstpage","265"],["dc.bibliographiccitation.lastpage","281"],["dc.contributor.author","Karedla, Narain"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Chizhik, Anna M."],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Chizhik, Alexey I."],["dc.date.accessioned","2020-05-29T09:29:20Z"],["dc.date.available","2020-05-29T09:29:20Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.1007/4243_2014_77"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66008"],["dc.relation.isbn","978-3-319-15635-4"],["dc.relation.isbn","978-3-319-15636-1"],["dc.relation.ispartof","Advanced Photon Counting"],["dc.title","Metal-Induced Energy Transfer"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","2616"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Nano Letters"],["dc.bibliographiccitation.lastpage","2622"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Isbaner, Sebastian"],["dc.contributor.author","Karedla, Narain"],["dc.contributor.author","Kaminska, Izabela"],["dc.contributor.author","Ruhlandt, Daja"],["dc.contributor.author","Raab, Mario"],["dc.contributor.author","Bohlen, Johann"],["dc.contributor.author","Chizhik, Alexey"],["dc.contributor.author","Gregor, Ingo"],["dc.contributor.author","Tinnefeld, Philip"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Tsukanov, Roman"],["dc.date.accessioned","2020-05-29T09:08:53Z"],["dc.date.available","2020-05-29T09:08:53Z"],["dc.date.issued","2018"],["dc.description.abstract","Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups."],["dc.identifier.doi","10.1021/acs.nanolett.8b00425"],["dc.identifier.pmid","29562123"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66007"],["dc.language.iso","en"],["dc.relation.eissn","1530-6992"],["dc.relation.issn","1530-6984"],["dc.relation.issn","1530-6992"],["dc.title","Axial Colocalization of Single Molecules with Nanometer Accuracy Using Metal-Induced Energy Transfer"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC