Now showing 1 - 10 of 13
  • 2009Conference Abstract
    [["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","European Journal of Pediatrics"],["dc.bibliographiccitation.volume","168"],["dc.contributor.author","Klinge, Lars"],["dc.contributor.author","Thoms, Sven"],["dc.contributor.author","Cierny, Irmgard"],["dc.contributor.author","Straub, Volker"],["dc.contributor.author","Bushby, Kate"],["dc.contributor.author","Gärtner, Jutta"],["dc.date.accessioned","2018-11-07T08:31:59Z"],["dc.date.available","2018-11-07T08:31:59Z"],["dc.date.issued","2009"],["dc.identifier.isi","000262826600054"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/17244"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","New york"],["dc.title","Defective membrane tubulation in dysferlin-deficient muscular dystrophy"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","362"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Journal of Structural Biology"],["dc.bibliographiccitation.lastpage","371"],["dc.bibliographiccitation.volume","175"],["dc.contributor.author","Thoms, Sven"],["dc.contributor.author","Hofhuis, Julia"],["dc.contributor.author","Thoeing, Christian"],["dc.contributor.author","Gärtner, Jutta"],["dc.contributor.author","Niemann, Hartmut H."],["dc.date.accessioned","2017-09-07T11:43:25Z"],["dc.date.available","2017-09-07T11:43:25Z"],["dc.date.issued","2011"],["dc.description.abstract","The yeast peroxisomal hydrolase Lpx1 belongs to the alpha/beta-hydrolase superfamily. In the absence of Lpx1, yeast peroxisomes show an aberrant vacuolated morphology similar to what is found in peroxisomal disorder patients. Here, we present the crystal structure of Lpx1 determined at a resolution of 1.9 angstrom. The structure reveals the complete catalytic triad with an unusual location of the acid residue after strand beta 6 of the canonical alpha/beta-hydrolase fold. A four-helix cap domain covers the active site. The interface between the alpha/beta-hydrolase core and the cap domain forms the potential substrate binding site, which may also comprise the tunnel that leads into the protein interior and widens into a cavity. Two further tunnels connect the active site to the protein surface, potentially facilitating substrate access. Lpx1 is a homodimer. The alpha/beta-hydrolase core folds of the two protomers form the dimer contact site. Further dimerization contacts arise from the mutual embracement of the cap domain of one protomer by the non-canonical C-terminal helix of the other, resulting in a total buried surface area of some 6000 angstrom(2). The unusual C-terminal helix sticks out from the core fold to which it is connected by an extended flexible loop. We analyzed whether this helix is required for dimerization and for import of the dimer into peroxisomes using biochemical assays in vitro and a microscopy-based interaction assay in mammalian cells. Surprisingly, the C-terminal helix is dispensable for dimerization and dimer import. The unusually robust self-interaction suggests that Lpx1 is imported into peroxisomes as dimer. (C) 2011 Elsevier Inc. All rights reserved."],["dc.identifier.doi","10.1016/j.jsb.2011.06.008"],["dc.identifier.gro","3142679"],["dc.identifier.isi","000293807000012"],["dc.identifier.pmid","21741480"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/109"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Academic Press Inc Elsevier Science"],["dc.relation.issn","1047-8477"],["dc.title","The unusual extended C-terminal helix of the peroxisomal alpha/beta-hydrolase Lpx1 is involved in dimer contacts but dispensable for dimerization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","7809"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.lastpage","13"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Soliman, Kareem"],["dc.contributor.author","Göttfert, Fabian"],["dc.contributor.author","Rosewich, Hendrik"],["dc.contributor.author","Thoms, Sven"],["dc.contributor.author","Gärtner, Jutta"],["dc.date.accessioned","2019-02-27T10:14:35Z"],["dc.date.available","2019-02-27T10:14:35Z"],["dc.date.issued","2018"],["dc.description.abstract","Peroxisomes are ubiquitous cell organelles involved in many metabolic and signaling functions. Their assembly requires peroxins, encoded by PEX genes. Mutations in PEX genes are the cause of Zellweger Syndrome spectrum (ZSS), a heterogeneous group of peroxisomal biogenesis disorders (PBD). The size and morphological features of peroxisomes are below the diffraction limit of light, which makes them attractive for super-resolution imaging. We applied Stimulated Emission Depletion (STED) microscopy to study the morphology of human peroxisomes and peroxisomal protein localization in human controls and ZSS patients. We defined the peroxisome morphology in healthy skin fibroblasts and the sub-diffraction phenotype of residual peroxisomal structures (‘ghosts’) in ZSS patients that revealed a relation between mutation severity and clinical phenotype. Further, we investigated the 70 kDa peroxisomal membrane protein (PMP70) abundance in relationship to the ZSS sub-diffraction phenotype. This work improves the morphological definition of peroxisomes. It expands current knowledge about peroxisome biogenesis and ZSS pathoethiology to the sub-diffraction phenotype including key peroxins and the characteristics of ghost peroxisomes."],["dc.identifier.doi","10.1038/s41598-018-24119-2"],["dc.identifier.pmid","29773809"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15261"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/57637"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/210"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A10: Peroxisomen als modulatorische Einheiten im Herzstoffwechsel und bei Herzinsuffizienz"],["dc.relation.issn","2045-2322"],["dc.relation.workinggroup","RG Thoms (Biochemistry and Molecular Medicine)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Super-resolution imaging reveals the sub-diffraction phenotype of Zellweger Syndrome ghosts and wild-type peroxisomes"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","599"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","609"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Thoms, Sven"],["dc.contributor.author","Harms, Imke"],["dc.contributor.author","Kalies, Kai-Uwe"],["dc.contributor.author","Gärtner, Jutta"],["dc.date.accessioned","2017-09-07T11:48:55Z"],["dc.date.available","2017-09-07T11:48:55Z"],["dc.date.issued","2011"],["dc.description.abstract","In peroxisome formation, models of near-autonomous peroxisome biogenesis with membrane protein integration directly from the cytosol into the peroxisomal membrane are in direct conflict with models whereby peroxisomes bud from the endoplasmic reticulum and receive their membrane proteins through a branch of the secretory pathway. We therefore reinvestigated the role of the Sec61 complex, the protein-conducting channel of the endoplasmic reticulum (ER) in peroxisome formation. We found that depletion or partial inactivation of Sec61 in yeast disables peroxisome formation. The ER entry of the early peroxisomal membrane protein Pex3 engineered with a glycosylation tag is reduced in sec61 mutant cells. Moreover, we were able to reconstitute Pex3 import into ER membranes in vitro, and we identified a variant of a signal anchor sequence for ER translocation at the Pex3 N-terminus. Our findings are consistent with a Sec61 requirement for peroxisome formation and a fundamental role of the ER in peroxisome biogenesis."],["dc.identifier.doi","10.1111/j.1600-0854.2011.01324.x"],["dc.identifier.gro","3142559"],["dc.identifier.isi","000301347800010"],["dc.identifier.pmid","22212716"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8923"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft [Ga354/5-2, Ga354/7-1]"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1398-9219"],["dc.title","Peroxisome Formation Requires the Endoplasmic Reticulum Channel Protein Sec61"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1742"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Molecular BioSystems"],["dc.bibliographiccitation.lastpage","1748"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Cohen, Yifat"],["dc.contributor.author","Klug, Yoel Alexander"],["dc.contributor.author","Dimitrov, Lazar"],["dc.contributor.author","Erez, Zohar"],["dc.contributor.author","Chuartzman, Silvia G."],["dc.contributor.author","Elinger, Dalia"],["dc.contributor.author","Yofe, Ido"],["dc.contributor.author","Soliman, Kareem"],["dc.contributor.author","Gärtner, Jutta"],["dc.contributor.author","Thoms, Sven"],["dc.contributor.author","Schekman, Randy"],["dc.contributor.author","Elbaz-Alon, Yael"],["dc.contributor.author","Zalckvar, Einat"],["dc.date.accessioned","2017-09-07T11:46:54Z"],["dc.date.available","2017-09-07T11:46:54Z"],["dc.date.issued","2014"],["dc.description.abstract","Peroxisomes are ubiquitous and dynamic organelles that house many important pathways of cellular metabolism. In recent years it has been demonstrated that mitochondria are tightly connected with peroxisomes and are defective in several peroxisomal diseases. Indeed, these two organelles share metabolic routes as well as resident proteins and, at least in mammals, are connected via a vesicular transport pathway. However the exact extent of cross-talk between peroxisomes and mitochondria remains unclear. Here we used a combination of high throughput genetic manipulations of yeast libraries alongside high content screens to systematically unravel proteins that affect the transport of peroxisomal proteins and peroxisome biogenesis. Follow up work on the effector proteins that were identified revealed that peroxisomes are not randomly distributed in cells but are rather localized to specific mitochondrial subdomains such as mitochondria-ER junctions and sites of acetyl-CoA synthesis. Our approach highlights the intricate geography of the cell and suggests an additional layer of organization as a possible way to enable efficient metabolism. Our findings pave the way for further studying the machinery aligning mitochondria and peroxisomes, the role of the juxtaposition, as well as its regulation during various metabolic conditions. More broadly, the approaches used here can be easily applied to study any organelle of choice, facilitating the discovery of new aspects in cell biology."],["dc.identifier.doi","10.1039/c4mb00001c"],["dc.identifier.gro","3142209"],["dc.identifier.isi","000337103600012"],["dc.identifier.pmid","24722918"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5743"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Royal Soc Chemistry"],["dc.relation.eissn","1742-2051"],["dc.relation.issn","1742-206X"],["dc.title","Peroxisomes are juxtaposed to strategic sites on mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC WOS
  • 2009Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","773"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Nature Genetics"],["dc.bibliographiccitation.lastpage","775"],["dc.bibliographiccitation.volume","41"],["dc.contributor.author","Henneke, Marco"],["dc.contributor.author","Diekmann, Simone"],["dc.contributor.author","Ohlenbusch, Andreas"],["dc.contributor.author","Kaiser, Jens"],["dc.contributor.author","Engelbrecht, Volkher"],["dc.contributor.author","Kohlschuetter, Alfried"],["dc.contributor.author","Kraetzner, Ralph"],["dc.contributor.author","Madruga-Garrido, Marcos"],["dc.contributor.author","Mayer, Michele"],["dc.contributor.author","Opitz, Lennart"],["dc.contributor.author","Rodriguez, Diana"],["dc.contributor.author","Rueschendorf, Franz"],["dc.contributor.author","Schumacher, Johannes"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Thoms, Sven"],["dc.contributor.author","Steinfeld, Robert"],["dc.contributor.author","Nürnberg, Peter"],["dc.contributor.author","Gärtner, Jutta"],["dc.date.accessioned","2017-09-07T11:46:53Z"],["dc.date.available","2017-09-07T11:46:53Z"],["dc.date.issued","2009"],["dc.description.abstract","Congenital cytomegalovirus brain infection without symptoms at birth can cause a static encephalopathy with characteristic patterns of brain abnormalities. Here we show that loss-of-function mutations in the gene encoding the RNASET2 glycoprotein lead to cystic leukoencephalopathy, an autosomal recessive disorder with an indistinguishable clinical and neuroradiological phenotype. Congenital cytomegalovirus infection and RNASET2 deficiency may both interfere with brain development and myelination through angiogenesis or RNA metabolism."],["dc.identifier.doi","10.1038/ng.398"],["dc.identifier.gro","3143090"],["dc.identifier.isi","000267786200005"],["dc.identifier.pmid","19525954"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6147"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/565"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","1061-4036"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","RNASET2-deficient cystic leukoencephalopathy resembles congenital cytomegalovirus brain infection"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC WOS
  • 2009Review
    [["dc.bibliographiccitation.firstpage","293"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Trends in Molecular Medicine"],["dc.bibliographiccitation.lastpage","302"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Thoms, Sven"],["dc.contributor.author","Gronborg, Sabine"],["dc.contributor.author","Gärtner, Jutta"],["dc.date.accessioned","2017-09-07T11:47:25Z"],["dc.date.available","2017-09-07T11:47:25Z"],["dc.date.issued","2009"],["dc.description.abstract","Peroxisomes are no longer regarded as autonomous organelles because evidence for their interplay with other cellular organelles is emerging. Peroxisomes interact with mitochondria in several metabolic pathways, including P-oxidation of fatty acids and the metabolism of reactive oxygen species. Both organelles are in close contact with the endoplasmic reticulum (ER) and share several proteins, including organelle fission factors. Today, the study of peroxisome biogenesis disorders mainly focuses on metabolic defects such as accumulation of very long chain fatty acids or plasmalogen deficiency. In addition to metabolic dysregulation, mitochondria and ER abnormalities have also been observed. Whether these contribute to disease pathology is not yet known, but recent findings suggest that this possibility should be considered. Here, we discuss the potential involvement of organelle interplay in peroxisomal disorders."],["dc.identifier.doi","10.1016/j.molmed.2009.05.002"],["dc.identifier.gro","3143096"],["dc.identifier.isi","000268616800002"],["dc.identifier.pmid","19560974"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6320"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/573"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Elsevier Sci Ltd"],["dc.relation.issn","1471-4914"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Organelle interplay in peroxisomal disorders"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","841"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","852"],["dc.bibliographiccitation.volume","130"],["dc.contributor.author","Hofhuis, Julia"],["dc.contributor.author","Bersch, Kristina"],["dc.contributor.author","Büssenschütt, Ronja"],["dc.contributor.author","Drzymalski, Marzena"],["dc.contributor.author","Liebetanz, David"],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.contributor.author","Wagner, Stefan"],["dc.contributor.author","Maier, Lars S."],["dc.contributor.author","Gärtner, Jutta"],["dc.contributor.author","Klinge, Lars"],["dc.contributor.author","Thoms, Sven"],["dc.date.accessioned","2018-04-23T11:47:27Z"],["dc.date.available","2018-04-23T11:47:27Z"],["dc.date.issued","2017"],["dc.description.abstract","The multi-C2 domain protein dysferlin localizes to the plasma membrane and the T-tubule system in skeletal muscle; however, its physiological mode of action is unknown. Mutations in the DYSF gene lead to autosomal recessive limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Here, we show that dysferlin has membrane tubulating capacity and that it shapes the T-tubule system. Dysferlin tubulates liposomes, generates a T-tubule-like membrane system in non-muscle cells, and links the recruitment of phosphatidylinositol 4,5-bisphosphate to the biogenesis of the T-tubule system. Pathogenic mutant forms interfere with all of these functions, indicating that muscular wasting and dystrophy are caused by the dysferlin mutants' inability to form a functional T-tubule membrane system."],["dc.identifier.doi","10.1242/jcs.198861"],["dc.identifier.gro","3142220"],["dc.identifier.pmid","28104817"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13342"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/160"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A10: Peroxisomen als modulatorische Einheiten im Herzstoffwechsel und bei Herzinsuffizienz"],["dc.relation.issn","0021-9533"],["dc.relation.workinggroup","RG L. Maier (Experimentelle Kardiologie)"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.relation.workinggroup","RG Thoms (Biochemistry and Molecular Medicine)"],["dc.title","Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e03640"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Schueren, Fabian"],["dc.contributor.author","Lingner, Thomas"],["dc.contributor.author","George, Rosemol"],["dc.contributor.author","Hofhuis, Julia"],["dc.contributor.author","Dickel, Corinna"],["dc.contributor.author","Gärtner, Jutta"],["dc.contributor.author","Thoms, Sven"],["dc.date.accessioned","2017-09-07T11:45:30Z"],["dc.date.available","2017-09-07T11:45:30Z"],["dc.date.issued","2014"],["dc.description.abstract","Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB getting targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes."],["dc.identifier.doi","10.7554/eLife.03640"],["dc.identifier.gro","3142048"],["dc.identifier.isi","000342090300002"],["dc.identifier.pmid","25247702"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11685"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3967"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Elife Sciences Publications Ltd"],["dc.relation.issn","2050-084X"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","314"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Journal of Medical Genetics"],["dc.bibliographiccitation.lastpage","316"],["dc.bibliographiccitation.volume","49"],["dc.contributor.author","Thoms, Sven"],["dc.contributor.author","Gärtner, Jutta"],["dc.date.accessioned","2017-09-07T11:48:53Z"],["dc.date.available","2017-09-07T11:48:53Z"],["dc.date.issued","2012"],["dc.description.abstract","Among the human PEX genes associated with peroxisome biogenesis disorders, only the PEX11 family genes had not previously been associated with human disease. A new study identifies the first patient with a mutation in PEX11 beta. The patient presents with symptoms atypical for peroxisome biogenesis disorders. Peroxisomes in cells derived from this patient appear enlarged and undivided, complying with the role of PEX11 proteins in peroxisome proliferation and division. These new findings widen the spectrum of clinical and cellular phenotypes of diseases associated with defective peroxisome formation."],["dc.identifier.doi","10.1136/jmedgenet-2012-100899"],["dc.identifier.gro","3142540"],["dc.identifier.isi","000303930700004"],["dc.identifier.pmid","22581969"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8902"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0022-2593"],["dc.relation.issn","1468-6244"],["dc.title","First PEX11 beta patient extends spectrum of peroxisomal biogenesis disorder phenotypes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC WOS