Options
Noubactep, Chicgoua
Loading...
Preferred name
Noubactep, Chicgoua
Official Name
Noubactep, Chicgoua
Alternative Name
Noubactep, C.
Main Affiliation
Now showing 1 - 1 of 1
2022Journal Article [["dc.bibliographiccitation.firstpage","3120"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","Water"],["dc.bibliographiccitation.volume","14"],["dc.contributor.affiliation","Cao, Viet; 1Faculty of Natural Sciences, Hung Vuong University, Nguyen Tat Thanh Street, Viet Tri 35120, Phu Tho, Vietnam"],["dc.contributor.affiliation","Bakari, Omari; 2Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania"],["dc.contributor.affiliation","Kenmogne-Tchidjo, Joseline Flore; 3Department of Chemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon"],["dc.contributor.affiliation","Gatcha-Bandjun, Nadège; 4Faculty of Science, Department of Chemistry, University of Maroua, Maroua P.O. Box 46, Cameroon"],["dc.contributor.affiliation","Ndé-Tchoupé, Arnaud Igor; 5School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing 211100, China"],["dc.contributor.affiliation","Gwenzi, Willis; 6Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Science, University of Kassel, Steinstrasse 19, D-37213 Witzenhausen, Germany"],["dc.contributor.affiliation","Njau, Karoli N.; 2Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania"],["dc.contributor.affiliation","Noubactep, Chicgoua; 2Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania"],["dc.contributor.author","Cao, Viet"],["dc.contributor.author","Bakari, Omari"],["dc.contributor.author","Kenmogne-Tchidjo, Joseline Flore"],["dc.contributor.author","Gatcha-Bandjun, Nadège"],["dc.contributor.author","Ndé-Tchoupé, Arnaud Igor"],["dc.contributor.author","Gwenzi, Willis"],["dc.contributor.author","Njau, Karoli N."],["dc.contributor.author","Noubactep, Chicgoua"],["dc.contributor.editor","Paulino, Alexandre T."],["dc.date.accessioned","2022-11-01T10:17:31Z"],["dc.date.available","2022-11-01T10:17:31Z"],["dc.date.issued","2022"],["dc.date.updated","2022-11-11T13:11:42Z"],["dc.description.abstract","Science denial relates to rejecting well-established views that are no longer questioned by scientists within a given community. This expression is frequently connected with climate change and evolution. In such cases, prevailing views are built on historical facts and consensus. For water remediation using metallic iron (Fe0), also known as the remediation Fe0/H2O system, a consensus on electro-chemical contaminant reduction was established during the 1990s and still prevails. Arguments against the reductive transformation concept have been regarded for more than a decade as ‘science denial’. However, is it the prevailing concept that denies the science of aqueous iron corrosion? This article retraces the path taken by our research group to question the reductive transformation concept. It is shown that the validity of the following has been questioned: (i) analytical applications of the arsenazo III method for the determination of uranium, (ii) molecular diffusion as sole relevant mass-transport process in the vicinity of the Fe0 surface in filtration systems, and (iii) the volumetric expansive nature of iron corrosion at pH > 4.5. Item (i) questions the capability of Fe0 to serve as an electron donor for UVI reduction under environmental conditions. Items (ii) and (iii) are inter-related, as the Fe0 surface is permanently shielded by a non-conductive oxide scale acting as a diffusion barrier to dissolved species and a barrier to electrons from Fe0. The net result is that no electron transfer from Fe0 to contaminants is possible under environmental conditions. This conclusion refutes the validity of the reductive transformation concept and calls for alternative theories."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.doi","10.3390/w14193120"],["dc.identifier.pii","w14193120"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/116828"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-605"],["dc.publisher","MDPI"],["dc.relation.eissn","2073-4441"],["dc.rights","CC BY 4.0"],["dc.title","Conceptualizing the Fe0/H2O System: A Call for Collaboration to Mark the 30th Anniversary of the Fe0-Based Permeable Reactive Barrier Technology"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI