Now showing 1 - 2 of 2
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","188102"],["dc.bibliographiccitation.issue","18"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","123"],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Forsting, Johanna"],["dc.contributor.author","Schepers, Anna V."],["dc.contributor.author","Kraxner, Julia"],["dc.contributor.author","Bauch, Susanne"],["dc.contributor.author","Witt, Hannes"],["dc.contributor.author","Klumpp, Stefan"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2020-12-10T18:25:50Z"],["dc.date.available","2020-12-10T18:25:50Z"],["dc.date.issued","2019"],["dc.description.abstract","The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin."],["dc.identifier.doi","10.1103/PhysRevLett.123.188102"],["dc.identifier.eissn","1079-7114"],["dc.identifier.issn","0031-9007"],["dc.identifier.pmid","31763918"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75854"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","info:eu-repo/grantAgreement/EC/H2020/724932/EU//MECHANICS"],["dc.relation.eissn","1079-7114"],["dc.relation.issn","0031-9007"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.access","openAccess"],["dc.rights.uri","http://creativecommons.org/licenses/by-nc-nd/4.0/"],["dc.subject","intermediate filaments; optical tweezers; atomic force microscopy; cytoskeleton; biomechanics; Monte Carlo simulation"],["dc.subject.ddc","530"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","cellular biophysics"],["dc.title","Lateral Subunit Coupling Determines Intermediate Filament Mechanics"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","submitted_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1999"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Soft Matter"],["dc.bibliographiccitation.lastpage","2008"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Brennich, Martha Elisabeth"],["dc.contributor.author","Vainio, Ulla"],["dc.contributor.author","Wedig, Tatjana"],["dc.contributor.author","Bauch, Susanne"],["dc.contributor.author","Herrmann, Harald"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2019-07-09T11:50:32Z"],["dc.date.available","2019-07-09T11:50:32Z"],["dc.date.issued","2019"],["dc.description.abstract","Vimentin intermediate filaments constitute a distinct filament system in mesenchymal cells that is instrumental for cellular mechanics and migration. In vitro, the rod-like monomers assemble in a multi-step, salt-dependent manner into micrometer long biopolymers. To disclose the underlying mechanisms further, we employed small angle X-ray scattering on two recombinant vimentin variants, whose assembly departs at strategic points from the normal assembly route: (i) vimentin with a tyrosine to leucine change at position 117; (ii) vimentin missing the non-α-helical carboxyl-terminal domain. Y117L vimentin assembles into unit-length filaments (ULFs) only, whereas ΔT vimentin assembles into filaments containing a higher number of tetramers per cross section than normal vimentin filaments. We show that the shape and inner structure of these mutant filaments is significantly altered. ULFs assembled from Y117L vimentin contain more, less tightly bundled vimentin tetramers, and ΔT vimentin filaments preserve the number density despite the higher number of tetramers per filament cross-section."],["dc.identifier.doi","10.1039/c8sm02281j"],["dc.identifier.pmid","30719518"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15958"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59791"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1744-6848"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.rights","CC BY-NC 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/3.0/"],["dc.subject.ddc","530"],["dc.subject.gro","cellular biophysics"],["dc.subject.mesh","Humans"],["dc.subject.mesh","Intermediate Filaments"],["dc.subject.mesh","Mutation"],["dc.subject.mesh","Protein Subunits"],["dc.subject.mesh","Scattering, Small Angle"],["dc.subject.mesh","Vimentin"],["dc.subject.mesh","X-Ray Diffraction"],["dc.title","Mutation-induced alterations of intra-filament subunit organization in vimentin filaments revealed by SAXS"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC