Options
Hadaček, Franz
Loading...
Preferred name
Hadaček, Franz
Official Name
Hadaček, Franz
Alternative Name
Hadaček, F.
Hadacek, Franz
Hadacek, F.
Main Affiliation
Now showing 1 - 1 of 1
2015Conference Paper [["dc.bibliographiccitation.firstpage","103"],["dc.bibliographiccitation.journal","Journal of Organometallic Chemistry"],["dc.bibliographiccitation.lastpage","110"],["dc.bibliographiccitation.volume","782"],["dc.contributor.author","Chobot, Vladimir"],["dc.contributor.author","Hadacek, Franz"],["dc.contributor.author","Weckwerth, Wolfram"],["dc.contributor.author","Kubicova, Lenka"],["dc.date.accessioned","2018-11-07T09:58:30Z"],["dc.date.available","2018-11-07T09:58:30Z"],["dc.date.issued","2015"],["dc.description.abstract","Anthranilic acid (ANA) and 3-hydroxyanthranilic acid (3-HANA) are kynurenine pathway intermediates of the tryptophan metabolism. A hitherto unemployed method combination, differential pulse voltammetry, mass spectrometry (nano-ESI MS), deoxyribose degradation and iron(II) autoxidation assays has been employed for studying of their redox chemistry and their interactions with iron(II) and iron(III) ions. Both acids inhibited the Fenton reaction by iron chelation and ROS scavenging in the deoxyribose degradation assay. In the iron(II) autoxidation assay, anthranilic acid showed antioxidant effects, whereas 3-hydroxyanthranilic acid exhibited apparent pro-oxidant activity. The differential pulse voltammograms of free metabolites and their iron(II) coordination complexes reflected these properties. Nano-ESI MS confirmed ANA and 3-HANA as efficient iron(II) chelators, both of which form coordination complexes of ligand:iron(II) ratio 1:1, 2:1, and 3:1. In addition, nano-ESI MS analyses of the oxidation effects by hydroxyl radical attack identified 3-HANA as strikingly more susceptible than ANA. 3-HANA susceptibility to oxidation may explain its decreased concentrations in the reaction mixture. The presented observations can add to explaining why 3-HANA levels decrease in patients with some neurological and other diseases which can often associated with elevated concentrations of ROS. (C) 2015 The Authors. Published by Elsevier B.V."],["dc.description.sponsorship","Austrian Science Fund (FWF) [P24630-B21]"],["dc.identifier.doi","10.1016/j.jorganchem.2015.01.005"],["dc.identifier.isi","000351637900016"],["dc.identifier.pmid","25892823"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/37375"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Sa"],["dc.publisher.place","Lausanne"],["dc.relation.conference","7th International Symposium on Bioorganometallic Chemistry"],["dc.relation.eventlocation","Vienna, AUSTRIA"],["dc.relation.issn","1872-8561"],["dc.relation.issn","0022-328X"],["dc.title","Iron chelation and redox chemistry of anthranilic acid and 3-hydroxyanthranilic acid: A comparison of two structurally related kynurenine pathway metabolites to obtain improved insights into their potential role in neurological disease development"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS
1 results