Now showing 1 - 1 of 1
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Algebraic Combinatorics"],["dc.bibliographiccitation.lastpage","22"],["dc.bibliographiccitation.volume","40"],["dc.contributor.author","Bamberg, John"],["dc.contributor.author","Gill, Nick"],["dc.contributor.author","Hayes, Thomas P."],["dc.contributor.author","Helfgott, Harald Andrés"],["dc.contributor.author","Seress, Ákos"],["dc.contributor.author","Spiga, Pablo"],["dc.date.accessioned","2017-09-07T11:54:20Z"],["dc.date.available","2017-09-07T11:54:20Z"],["dc.date.issued","2013"],["dc.description.abstract","In this paper we are concerned with the conjecture that, for any set of generators S of the symmetric group Sym(n), the word length in terms of S of every permutation is bounded above by a polynomial of n. We prove this conjecture for sets of generators containing a permutation fixing at least 37 % of the points."],["dc.identifier.arxiv","1205.1596"],["dc.identifier.doi","10.1007/s10801-013-0476-3"],["dc.identifier.gro","3146554"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4334"],["dc.notes.intern","mathe"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","Springer Nature"],["dc.relation.eissn","1572-9192"],["dc.relation.issn","0925-9899"],["dc.subject","Cayley graph Diameter Babai’s conjecture Babai-Seress conjecture"],["dc.title","Bounds on the diameter of Cayley graphs of the symmetric group"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI