Now showing 1 - 2 of 2
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","5230"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Chemical Science"],["dc.bibliographiccitation.lastpage","5234"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Chandra Mondal, Kartik"],["dc.contributor.author","Roy, Sudipta"],["dc.contributor.author","Dittrich, Birger"],["dc.contributor.author","Maity, Bholanath"],["dc.contributor.author","Dutta, Sayan"],["dc.contributor.author","Koley, Debasis"],["dc.contributor.author","Vasa, Suresh Kumar"],["dc.contributor.author","Linser, Rasmus"],["dc.contributor.author","Dechert, Sebastian"],["dc.contributor.author","Roesky, Herbert W."],["dc.date.accessioned","2015-07-17T07:46:46Z"],["dc.date.accessioned","2021-10-27T13:12:19Z"],["dc.date.available","2015-07-17T07:46:46Z"],["dc.date.available","2021-10-27T13:12:19Z"],["dc.date.issued","2015"],["dc.description.abstract","Silicondiselenide is a semiconductor and exists as an insoluble polymer (SiSe2)n which is prepared by reacting elemental silicon with selenium powder in the temperature range of 400–850 °C. Herein, we report on the synthesis, isolation, and characterization of carbene stabilized molecular silicondiselenide in the form of (cAAC)2Si2Se4 (3) [cAAC = cyclic alkyl(amino)carbene]. 3 is synthesized via reaction of diatomic silicon(0) compound (cAAC)2Si2 (2) with black selenium powder at −78 °C to room temperature. The intensely orange colored compound 3 is soluble in polar organic solvents and stable at room temperature for a month under an inert atmosphere. 3 decomposes above 245 °C. The molecular structure of 3 has been confirmed by X-ray single crystal diffraction. It is also characterized by UV-vis, IR, Raman spectroscopy and mass spectrometry. The stability, bonding, and electron density distributions of 3 have been studied by theoretical calculations."],["dc.identifier.doi","10.1039/C5SC01516B"],["dc.identifier.isi","000359214100017"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11973"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91681"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Royal Soc Chemistry"],["dc.relation.issn","2041-6539"],["dc.relation.issn","2041-6520"],["dc.relation.orgunit","Fakultät für Chemie"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject","silicondiselenide; semiconducting; soluble molecular variant"],["dc.title","A soluble molecular variant of the semiconducting silicondiselenide"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","14893"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Jaipuria, Garima"],["dc.contributor.author","Leonov, Andrei"],["dc.contributor.author","Giller, Karin"],["dc.contributor.author","Vasa, Suresh Kumar"],["dc.contributor.author","Jaremko, Lukasz"],["dc.contributor.author","Jaremko, Mariusz"],["dc.contributor.author","Linser, Rasmus"],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Zweckstetter, Markus"],["dc.date.accessioned","2018-11-07T10:26:01Z"],["dc.date.available","2018-11-07T10:26:01Z"],["dc.date.issued","2017"],["dc.description.abstract","Cholesterol is an important regulator of membrane protein function. However, the exact mechanisms involved in this process are still not fully understood. Here we study how the tertiary and quaternary structure of the mitochondrial translocator protein TSPO, which binds cholesterol with nanomolar affinity, is affected by this sterol. Residue-specific analysis of TSPO by solid-state NMR spectroscopy reveals a dynamic monomer-dimer equilibrium of TSPO in the membrane. Binding of cholesterol to TSPO's cholesterol-recognition motif leads to structural changes across the protein that shifts the dynamic equilibrium towards the translocator monomer. Consistent with an allosteric mechanism, a mutation within the oligomerization interface perturbs transmembrane regions located up to 35 angstrom away from the interface, reaching TSPO's cholesterol-binding motif. The lower structural stability of the intervening transmembrane regions provides a mechanistic basis for signal transmission. Our study thus reveals an allosteric signal pathway that connects membrane protein tertiary and quaternary structure with cholesterol binding."],["dc.identifier.doi","10.1038/ncomms14893"],["dc.identifier.isi","000397799000001"],["dc.identifier.pmid","28358007"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14416"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42959"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Cholesterol-mediated allosteric regulation of the mitochondrial translocator protein structure"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS