Options
Schuldiner, Maya
Loading...
Preferred name
Schuldiner, Maya
Official Name
Schuldiner, Maya
Alternative Name
Schuldiner, M.
Now showing 1 - 9 of 9
2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","269"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","282"],["dc.bibliographiccitation.volume","217"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Mari, Muriel"],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Rosenfeld-Gur, Eden"],["dc.contributor.author","Moldavski, Ofer"],["dc.contributor.author","Castro, Inês G."],["dc.contributor.author","Soni, Krishnakant G."],["dc.contributor.author","Harpaz, Nofar"],["dc.contributor.author","Levine, Tim P"],["dc.contributor.author","Futerman, Anthony H."],["dc.contributor.author","Reggiori, Fulvio"],["dc.contributor.author","Bankaitis, Vytas A."],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Bohnert, Maria"],["dc.date.accessioned","2022-07-04T12:38:21Z"],["dc.date.available","2022-07-04T12:38:21Z"],["dc.date.issued","2018"],["dc.description.abstract","Functional heterogeneity within the lipid droplet (LD) pool of a single cell has been observed, yet the underlying mechanisms remain enigmatic. Here, we report on identification of a specialized LD subpopulation characterized by a unique proteome and a defined geographical location at the nucleus-vacuole junction contact site. In search for factors determining identity of these LDs, we screened ∼6,000 yeast mutants for loss of targeting of the subpopulation marker Pdr16 and identified Ldo45 (LD organization protein of 45 kD) as a crucial targeting determinant. Ldo45 is the product of a splicing event connecting two adjacent genes (YMR147W and YMR148W/OSW5/LDO16). We show that Ldo proteins cooperate with the LD biogenesis component seipin and establish LD identity by defining positioning and surface-protein composition. Our studies suggest a mechanism to establish functional differentiation of organelles, opening the door to better understanding of metabolic decisions in cells."],["dc.identifier.doi","10.1083/jcb.201704122"],["dc.identifier.pmid","29187527"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112374"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/17"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Bohnert (Lipid Droplet Kommunikation)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Journal of Cell Biology"],["dc.bibliographiccitation.volume","220"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Zung, Naama"],["dc.contributor.author","Collado, Javier"],["dc.contributor.author","Drwesh, Layla"],["dc.contributor.author","Fenech, Emma J."],["dc.contributor.author","Fadel, Amir"],["dc.contributor.author","Dezorella, Nili"],["dc.contributor.author","Bykov, Yury S."],["dc.contributor.author","Rapaport, Doron"],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2021-12-01T09:21:03Z"],["dc.date.available","2021-12-01T09:21:03Z"],["dc.date.issued","2021"],["dc.description.abstract","Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease."],["dc.identifier.doi","10.1083/jcb.202104100"],["dc.identifier.pmid","34694322"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94334"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/365"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/162"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article Overview [["dc.bibliographiccitation.firstpage","395"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Developmental Cell"],["dc.bibliographiccitation.lastpage","409"],["dc.bibliographiccitation.volume","39"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Shai, Nadav"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Bohnert, Maria"],["dc.date.accessioned","2022-07-11T15:02:22Z"],["dc.date.available","2022-07-11T15:02:22Z"],["dc.date.issued","2016"],["dc.description.abstract","Membrane contact sites enable interorganelle communication by positioning organelles in close proximity using molecular \"tethers.\" With a growing understanding of the importance of contact sites, the hunt for new contact sites and their tethers is in full swing. Determining just what is a tether has proven challenging. Here, we aim to delineate guidelines that define the prerequisites for categorizing a protein as a tether. Setting this gold standard now, while groups from different disciplines are beginning to explore membrane contact sites, will enable efficient cooperation in the growing field and help to realize a great collaborative opportunity to boost its development."],["dc.identifier.doi","10.1016/j.devcel.2016.10.022"],["dc.identifier.pmid","27875684"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112461"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/4"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1878-1551"],["dc.relation.issn","1534-5807"],["dc.relation.workinggroup","RG Bohnert (Lipid Droplet Kommunikation)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017-09Journal Article Overview [["dc.bibliographiccitation.firstpage","1469"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta. Molecular Cell Research"],["dc.bibliographiccitation.lastpage","1480"],["dc.bibliographiccitation.volume","1864"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-11T15:10:27Z"],["dc.date.available","2022-07-11T15:10:27Z"],["dc.date.issued","2017-09"],["dc.description.abstract","Mitochondria, cellular metabolic hubs, perform many essential processes and are required for the production of metabolites such as ATP, iron-sulfur clusters, heme, amino acids and nucleotides. To fulfill their multiple roles, mitochondria must communicate with all other organelles to exchange small molecules, ions and lipids. Since mitochondria are largely excluded from vesicular trafficking routes, they heavily rely on membrane contact sites. Contact sites are areas of close proximity between organelles that allow efficient transfer of molecules, saving the need for slow and untargeted diffusion through the cytosol. More globally, multiple metabolic pathways require coordination between mitochondria and additional organelles and mitochondrial activity affects all other cellular entities and vice versa. Therefore, uncovering the different means of mitochondrial communication will allow us a better understanding of mitochondria and may illuminate disease processes that occur in the absence of proper cross-talk. In this review we focus on how mitochondria interact with all other organelles and emphasize how this communication is essential for mitochondrial and cellular homeostasis. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann."],["dc.identifier.doi","10.1016/j.bbamcr.2017.04.012"],["dc.identifier.pmid","28433686"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112464"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/91"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","0167-4889"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Mitochatting - If only we could be a fly on the cell wall"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019-02-22Journal Article Research Paper [["dc.bibliographiccitation.artnumber","2515256418825409"],["dc.bibliographiccitation.journal","Contact"],["dc.bibliographiccitation.volume","2"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Tsui, Hui S"],["dc.contributor.author","Antunes, Diana"],["dc.contributor.author","Fernández-Del-RÃo, LucÃa"],["dc.contributor.author","Bradley, Michelle C."],["dc.contributor.author","Dunn, Cory D"],["dc.contributor.author","Nguyen, Theresa P. T."],["dc.contributor.author","Rapaport, Doron"],["dc.contributor.author","Clarke, Catherine F."],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-04T13:56:18Z"],["dc.date.available","2022-07-04T13:56:18Z"],["dc.date.issued","2019-02-22"],["dc.description.abstract","Loss of the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) complex that resides in contact sites between the yeast ER and mitochondria leads to impaired respiration; however, the reason for that is not clear. We find that in ERMES null mutants, there is an increase in the level of mRNAs encoding for biosynthetic enzymes of coenzyme Q6 (CoQ6), an essential electron carrier of the mitochondrial respiratory chain. We show that the mega complexes involved in CoQ6 biosynthesis (CoQ synthomes) are destabilized in ERMES mutants. This, in turn, affects the level and distribution of CoQ6 within the cell, resulting in reduced mitochondrial CoQ6. We suggest that these outcomes contribute to the reduced respiration observed in ERMES mutants. Fluorescence microscopy experiments demonstrate close proximity between the CoQ synthome and ERMES, suggesting a spatial coordination. The involvement of the ER-mitochondria contact site in regulation of CoQ6 biogenesis highlights an additional level of communication between these two organelles."],["dc.identifier.doi","10.1177/2515256418825409"],["dc.identifier.pmid","30937424"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112382"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/52"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","2515-2564"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY-NC 4.0"],["dc.title","The Endoplasmic Reticulum-Mitochondria Encounter Structure Complex Coordinates Coenzyme Q Biosynthesis"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.volume","219"],["dc.contributor.author","Wang, Yaxi"],["dc.contributor.author","Yuan, Peihua"],["dc.contributor.author","Grabon, Aby"],["dc.contributor.author","Tripathi, Ashutosh"],["dc.contributor.author","Lee, Dongju"],["dc.contributor.author","Rodriguez, Martin"],["dc.contributor.author","Lönnfors, Max"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Wang, Zehua"],["dc.contributor.author","Man Lam, Sin"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Bankaitis, Vytas A."],["dc.date.accessioned","2022-07-08T10:36:17Z"],["dc.date.available","2022-07-08T10:36:17Z"],["dc.date.issued","2020"],["dc.description.abstract","The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function."],["dc.identifier.doi","10.1083/jcb.201907128"],["dc.identifier.pmid","32303746"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112413"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/111"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY-NC-SA 4.0"],["dc.title","Noncanonical regulation of phosphatidylserine metabolism by a Sec14-like protein and a lipid kinase"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article Overview [["dc.bibliographiccitation.firstpage","196"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","The FEBS Journal"],["dc.bibliographiccitation.lastpage","210"],["dc.bibliographiccitation.volume","284"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-11T15:04:09Z"],["dc.date.available","2022-07-11T15:04:09Z"],["dc.date.issued","2017"],["dc.description.abstract","Mitochondria have crucial functions in the cell, including ATP generation, iron-sulfur cluster biogenesis, nucleotide biosynthesis, and amino acid metabolism. All of these functions require tight regulation on mitochondrial activity and homeostasis. As mitochondria biogenesis is controlled by the nucleus and almost all mitochondrial proteins are encoded by nuclear genes, a tight communication network between mitochondria and the nucleus has evolved, which includes signaling cascades, proteins which are dual-localized to the two compartments, and sensing of mitochondrial products by nuclear proteins. All of these enable a crosstalk between mitochondria and the nucleus that allows the 'ground control' to get information on mitochondria's status. Such information facilitates the creation of a cellular balance of mitochondrial status with energetic needs. This communication also allows a transcriptional response in case mitochondrial function is impaired aimed to restore mitochondrial homeostasis. As mitochondrial dysfunction is related to a growing number of genetic diseases as well as neurodegenerative conditions and aging, elucidating the mechanisms governing the mitochondrial/nuclear communication should progress a better understanding of mitochondrial dysfunctions."],["dc.identifier.doi","10.1111/febs.13778"],["dc.identifier.pmid","27283924"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112462"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/90"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1742-4658"],["dc.relation.issn","1742-464X"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Ground control to major TOM: mitochondria-nucleus communication"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","268"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Cells"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Castro, Inês G."],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Persiani, Elisa"],["dc.contributor.author","Rochford, Justin J."],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Bohnert, Maria"],["dc.date.accessioned","2022-07-04T14:24:51Z"],["dc.date.available","2022-07-04T14:24:51Z"],["dc.date.issued","2019"],["dc.description.abstract","Seipin (BSCL2/SPG17) is a key factor in lipid droplet (LD) biology, and its dysfunction results in severe pathologies, including the fat storage disease Berardinelli-Seip congenital lipodystrophy type 2, as well as several neurological seipinopathies. Despite its importance for human health, the molecular role of seipin is still enigmatic. Seipin is evolutionarily conserved from yeast to humans. In yeast, seipin was recently found to cooperate with the lipid droplet organization (LDO) proteins, Ldo16 and Ldo45, two structurally-related proteins involved in LD function and identity that display remote homology to the human protein promethin/TMEM159. In this study, we show that promethin is indeed an LD-associated protein that forms a complex with seipin, and its localization to the LD surface can be modulated by seipin expression levels. We thus identify promethin as a novel seipin partner protein."],["dc.identifier.doi","10.3390/cells8030268"],["dc.identifier.pmid","30901948"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112383"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/62"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","2073-4409"],["dc.relation.workinggroup","RG Bohnert (Lipid Droplet Kommunikation)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Promethin Is a Conserved Seipin Partner Protein"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Preprint [["dc.contributor.author","Wang, Yaxi"],["dc.contributor.author","Yuan, Peihua"],["dc.contributor.author","Tripathi, Ashutosh"],["dc.contributor.author","Rodriguez, Martin"],["dc.contributor.author","Lönnfors, Max"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Bankaitis, Vytas A."],["dc.date.accessioned","2022-07-11T12:29:59Z"],["dc.date.available","2022-07-11T12:29:59Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1101/696336"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112458"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/86"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Non-Canonical Regulation of Phosphatidylserine Metabolism by a Phosphatidylinositol Transfer Protein and a Phosphatidylinositol 4-OH Kinase"],["dc.type","preprint"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI