Now showing 1 - 10 of 17
  • 2022Journal Article
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Chattopadhyay, Shiladitya"],["dc.contributor.author","Garcia-Martinez, Jose"],["dc.contributor.author","Haimovich, Gal"],["dc.contributor.author","Fischer, Jonathan"],["dc.contributor.author","Khwaja, Aya"],["dc.contributor.author","Barkai, Oren"],["dc.contributor.author","Chuartzman, Silvia Gabriela"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Elran, Ron"],["dc.contributor.author","Rosenberg, Miriam I."],["dc.contributor.author","Choder, Mordechai"],["dc.date.accessioned","2022-12-01T08:30:50Z"],["dc.date.available","2022-12-01T08:30:50Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract\n \n mRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the 5’ to 3’ exonuclease Xrn1. Here we show that nucleocytoplasmic shuttling of several yeast mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1, location of one of which is conserved from yeast to human. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Preventing Xrn1 import, either by deleting\n KAP120\n or mutating the two Xrn1 NLSs, compromises transcription and, unexpectedly, also cytoplasmic decay, uncovering a cytoplasmic decay pathway that initiates in the nucleus. Most mRNAs are degraded by both pathways - the ratio between them represents a full spectrum. Importantly, Xrn1 shuttling is required for proper responses to environmental changes, e.g., fluctuating temperatures, involving proper changes in mRNA abundance and in cell proliferation rate."],["dc.identifier.doi","10.1038/s41467-022-34417-z"],["dc.identifier.pii","34417"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/117992"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","2041-1723"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and a novel mRNA decay pathway"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","173.e5"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Developmental Cell"],["dc.bibliographiccitation.lastpage","191.e5"],["dc.bibliographiccitation.volume","51"],["dc.contributor.author","Chao, Jesse T."],["dc.contributor.author","Piña, Francisco"],["dc.contributor.author","Onishi, Masayuki"],["dc.contributor.author","Cohen, Yifat"],["dc.contributor.author","Lai, Ya-Shiuan"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Niwa, Maho"],["dc.date.accessioned","2022-07-06T12:16:31Z"],["dc.date.available","2022-07-06T12:16:31Z"],["dc.date.issued","2019"],["dc.description.abstract","During cell division, the inheritance of a functional endoplasmic reticulum (ER) is ensured by the endoplasmic reticulum stress surveillance (ERSU) pathway. Activation of ERSU causes the septin ring to mislocalize, which blocks ER inheritance and cytokinesis. Here, we uncover that the septin ring in fact translocates to previously utilized cell division sites called cytokinetic remnants (CRMs). This unconventional translocation requires Nba1, a negative polarity regulator that normally prevents repolarization and re-budding at CRMs. Furthermore, septin ring translocation relies on the recruitment and activation of a key ERSU component Slt2 by Bem1, without activating Cdc42. Failure to transfer all septin subunits to CRMs delays the cell's ability to re-enter the cell cycle when ER homeostasis is restored and hinders cell growth after ER stress recovery. Thus, these deliberate but unprecedented rearrangements of cell polarity factors during ER stress safeguard cell survival and the timely cell-cycle re-entry upon ER stress recovery."],["dc.identifier.doi","10.1016/j.devcel.2019.08.017"],["dc.identifier.pmid","31564614"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112400"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/94"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1878-1551"],["dc.relation.issn","1534-5807"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Transfer of the Septin Ring to Cytokinetic Remnants in ER Stress Directs Age-Sensitive Cell-Cycle Re-entry"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Overview
    [["dc.bibliographiccitation.firstpage","483"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Nature Reviews. Molecular Cell Biology"],["dc.bibliographiccitation.lastpage","484"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Bohnert, Maria"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-11T15:20:59Z"],["dc.date.available","2022-07-11T15:20:59Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1038/s41580-018-0022-1"],["dc.identifier.pmid","29765158"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112466"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/88"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1471-0080"],["dc.relation.issn","1471-0072"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Bohnert (Lipid Droplet Kommunikation)"],["dc.title","Stepping outside the comfort zone of membrane contact site research"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017-12-15Journal Article Overview
    [["dc.bibliographiccitation.firstpage","4079"],["dc.bibliographiccitation.issue","24"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","4085"],["dc.bibliographiccitation.volume","130"],["dc.contributor.author","Aviram, Naama"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-11T15:07:56Z"],["dc.date.available","2022-07-11T15:07:56Z"],["dc.date.issued","2017-12-15"],["dc.description.abstract","The evolutionary emergence of organelles was a defining process in diversifying biochemical reactions within the cell and enabling multicellularity. However, compartmentalization also imposed a great challenge-the need to import proteins synthesized in the cytosol into their respective sites of function. For example, one-third of all genes encode for proteins that must be targeted and translocated into the endoplasmic reticulum (ER), which serves as the entry site to the majority of endomembrane compartments. Decades of research have set down the fundamental principles of how proteins get from the cytosol into the ER, and recent studies have brought forward new pathways and additional regulators enabling better definition of the rules governing substrate recognition. In this Cell Science at a Glance article and the accompanying poster, we give an overview of our current understanding of the multifaceted and regulated processes of protein targeting and translocation to the ER."],["dc.identifier.doi","10.1242/jcs.204396"],["dc.identifier.pmid","29246967"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112463"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/19"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1477-9137"],["dc.relation.issn","0021-9533"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Targeting and translocation of proteins to the endoplasmic reticulum at a glance"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article Overview
    [["dc.bibliographiccitation.firstpage","395"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Developmental Cell"],["dc.bibliographiccitation.lastpage","409"],["dc.bibliographiccitation.volume","39"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Shai, Nadav"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Bohnert, Maria"],["dc.date.accessioned","2022-07-11T15:02:22Z"],["dc.date.available","2022-07-11T15:02:22Z"],["dc.date.issued","2016"],["dc.description.abstract","Membrane contact sites enable interorganelle communication by positioning organelles in close proximity using molecular \"tethers.\" With a growing understanding of the importance of contact sites, the hunt for new contact sites and their tethers is in full swing. Determining just what is a tether has proven challenging. Here, we aim to delineate guidelines that define the prerequisites for categorizing a protein as a tether. Setting this gold standard now, while groups from different disciplines are beginning to explore membrane contact sites, will enable efficient cooperation in the growing field and help to realize a great collaborative opportunity to boost its development."],["dc.identifier.doi","10.1016/j.devcel.2016.10.022"],["dc.identifier.pmid","27875684"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112461"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/4"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1878-1551"],["dc.relation.issn","1534-5807"],["dc.relation.workinggroup","RG Bohnert (Lipid Droplet Kommunikation)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","jcs211110"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.volume","131"],["dc.contributor.author","Vitali, Daniela G."],["dc.contributor.author","Sinzel, Monika"],["dc.contributor.author","Bulthuis, Elianne P."],["dc.contributor.author","Kolb, Antonia"],["dc.contributor.author","Zabel, Susanne"],["dc.contributor.author","Mehlhorn, Dietmar G."],["dc.contributor.author","Figueiredo Costa, Bruna"],["dc.contributor.author","Farkas, Ákos"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Grefen, Christopher"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Borgese, Nica"],["dc.contributor.author","Rapaport, Doron"],["dc.date.accessioned","2020-12-10T18:41:52Z"],["dc.date.available","2020-12-10T18:41:52Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1242/jcs.211110"],["dc.identifier.pmid","29661846"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77708"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/60"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.title","The GET pathway can increase the risk of mitochondrial outer membrane proteins to be mistargeted to the ER"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Preprint
    [["dc.contributor.author","Chao, Jesse T."],["dc.contributor.author","Piña, Francisco"],["dc.contributor.author","Onishi, Masayuki"],["dc.contributor.author","Cohen, Yifat"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Niwa, Maho"],["dc.date.accessioned","2022-07-11T12:31:26Z"],["dc.date.available","2022-07-11T12:31:26Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1101/698829"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112459"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/87"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Transfer of Septin Rings to Cytokinetic Remnants Directs Age-Sensitive ER stress Surveillance Cell Cycle Re-entry"],["dc.type","preprint"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017-09Journal Article Overview
    [["dc.bibliographiccitation.firstpage","1469"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta. Molecular Cell Research"],["dc.bibliographiccitation.lastpage","1480"],["dc.bibliographiccitation.volume","1864"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-11T15:10:27Z"],["dc.date.available","2022-07-11T15:10:27Z"],["dc.date.issued","2017-09"],["dc.description.abstract","Mitochondria, cellular metabolic hubs, perform many essential processes and are required for the production of metabolites such as ATP, iron-sulfur clusters, heme, amino acids and nucleotides. To fulfill their multiple roles, mitochondria must communicate with all other organelles to exchange small molecules, ions and lipids. Since mitochondria are largely excluded from vesicular trafficking routes, they heavily rely on membrane contact sites. Contact sites are areas of close proximity between organelles that allow efficient transfer of molecules, saving the need for slow and untargeted diffusion through the cytosol. More globally, multiple metabolic pathways require coordination between mitochondria and additional organelles and mitochondrial activity affects all other cellular entities and vice versa. Therefore, uncovering the different means of mitochondrial communication will allow us a better understanding of mitochondria and may illuminate disease processes that occur in the absence of proper cross-talk. In this review we focus on how mitochondria interact with all other organelles and emphasize how this communication is essential for mitochondrial and cellular homeostasis. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann."],["dc.identifier.doi","10.1016/j.bbamcr.2017.04.012"],["dc.identifier.pmid","28433686"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112464"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/91"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","0167-4889"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Mitochatting - If only we could be a fly on the cell wall"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017-10-01Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","3222"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","3233"],["dc.bibliographiccitation.volume","130"],["dc.contributor.author","Cohen, Nir"],["dc.contributor.author","Breker, Michal"],["dc.contributor.author","Bakunts, Anush"],["dc.contributor.author","Pesek, Kristina"],["dc.contributor.author","Chas, Ainara"],["dc.contributor.author","Argemí, Josepmaria"],["dc.contributor.author","Orsi, Andrea"],["dc.contributor.author","Gal, Lihi"],["dc.contributor.author","Chuartzman, Silvia"],["dc.contributor.author","Wigelman, Yoav"],["dc.contributor.author","Jonas, Felix"],["dc.contributor.author","Walter, Peter"],["dc.contributor.author","Ernst, Robert"],["dc.contributor.author","Aragón, Tomás"],["dc.contributor.author","van Anken, Eelco"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-06T07:26:39Z"],["dc.date.available","2022-07-06T07:26:39Z"],["dc.date.issued","2017-10-01"],["dc.description.abstract","The unfolded protein response (UPR) allows cells to adjust secretory pathway capacity according to need. Ire1, the endoplasmic reticulum (ER) stress sensor and central activator of the UPR is conserved from the budding yeast Saccharomyces cerevisiae to humans. Under ER stress conditions, Ire1 clusters into foci that enable optimal UPR activation. To discover factors that affect Ire1 clustering, we performed a high-content screen using a whole-genome yeast mutant library expressing Ire1-mCherry. We imaged the strains following UPR induction and found 154 strains that displayed alterations in Ire1 clustering. The hits were enriched for iron and heme effectors and binding proteins. By performing pharmacological depletion and repletion, we confirmed that iron (Fe3+) affects UPR activation in both yeast and human cells. We suggest that Ire1 clustering propensity depends on membrane composition, which is governed by heme-dependent biosynthesis of sterols. Our findings highlight the diverse cellular functions that feed into the UPR and emphasize the cross-talk between organelles required to concertedly maintain homeostasis."],["dc.identifier.doi","10.1242/jcs.201715"],["dc.identifier.pmid","28794014"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112397"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/83"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1477-9137"],["dc.relation.issn","0021-9533"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Iron affects Ire1 clustering propensity and the amplitude of endoplasmic reticulum stress signaling"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Overview
    [["dc.bibliographiccitation.firstpage","199"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Trends in Biochemical Sciences"],["dc.bibliographiccitation.lastpage","210"],["dc.bibliographiccitation.volume","43"],["dc.contributor.author","Castro, Inês Gomes"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Zalckvar, Einat"],["dc.date.accessioned","2022-07-11T15:22:45Z"],["dc.date.available","2022-07-11T15:22:45Z"],["dc.date.issued","2018"],["dc.description.abstract","The eukaryotic cell is organized as a complex grid system where membrane-bound cellular compartments, organelles, must be localized to the right place at the right time. One way to facilitate correct organelle localization and organelle cooperation is through membrane contact sites, areas of close proximity between two organelles that are bridged by protein/lipid complexes. It is now clear that all organelles physically contact each other. The main focus of this review is contact sites of peroxisomes, central metabolic hubs whose defects lead to a variety of diseases. New peroxisome contacts, their tethering complexes and functions have been recently discovered. However, if and how peroxisome contacts contribute to the development of peroxisome-related diseases is still a mystery."],["dc.identifier.doi","10.1016/j.tibs.2018.01.001"],["dc.identifier.pmid","29395653"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112467"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/89"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","0968-0004"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.title","Mind the Organelle Gap - Peroxisome Contact Sites in Disease"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC