Now showing 1 - 10 of 15
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2797"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","2811"],["dc.bibliographiccitation.volume","218"],["dc.contributor.author","Bykov, Yury S."],["dc.contributor.author","Cohen, Nir"],["dc.contributor.author","Gabrielli, Natalia"],["dc.contributor.author","Manenschijn, Hetty"],["dc.contributor.author","Welsch, Sonja"],["dc.contributor.author","Chlanda, Petr"],["dc.contributor.author","Kukulski, Wanda"],["dc.contributor.author","Patil, Kiran R."],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Briggs, John A. G."],["dc.date.accessioned","2022-07-04T14:43:24Z"],["dc.date.available","2022-07-04T14:43:24Z"],["dc.date.issued","2019"],["dc.description.abstract","Genetic screens using high-throughput fluorescent microscopes have generated large datasets, contributing many cell biological insights. Such approaches cannot tackle questions requiring knowledge of ultrastructure below the resolution limit of fluorescent microscopy. Electron microscopy (EM) reveals detailed cellular ultrastructure but requires time-consuming sample preparation, limiting throughput. Here we describe a robust method for screening by high-throughput EM. Our approach uses combinations of fluorophores as barcodes to uniquely mark each cell type in mixed populations and correlative light and EM (CLEM) to read the barcode of each cell before it is imaged by EM. Coupled with an easy-to-use software workflow for correlation, segmentation, and computer image analysis, our method, called \"MultiCLEM,\" allows us to extract and analyze multiple cell populations from each EM sample preparation. We demonstrate several uses for MultiCLEM with 15 different yeast variants. The methodology is not restricted to yeast, can be scaled to higher throughput, and can be used in multiple ways to enable EM to become a powerful screening technique."],["dc.identifier.doi","10.1083/jcb.201812081"],["dc.identifier.pmid","31289126"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112384"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/77"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","High-throughput ultrastructure screening using electron microscopy and fluorescent barcoding"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","477"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Yeast"],["dc.bibliographiccitation.lastpage","483"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Chuartzman, Silvia G."],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-04T13:20:33Z"],["dc.date.available","2022-07-04T13:20:33Z"],["dc.date.issued","2018"],["dc.description.abstract","In the last decade several collections of Saccharomyces cerevisiae yeast strains have been created. In these collections every gene is modified in a similar manner such as by a deletion or the addition of a protein tag. Such libraries have enabled a diversity of systematic screens, giving rise to large amounts of information regarding gene functions. However, often papers describing such screens focus on a single gene or a small set of genes and all other loci affecting the phenotype of choice ('hits') are only mentioned in tables that are provided as supplementary material and are often hard to retrieve or search. To help unify and make such data accessible, we have created a Database of High Throughput Screening Hits (dHITS). The dHITS database enables information to be obtained about screens in which genes of interest were found as well as the other genes that came up in that screen - all in a readily accessible and downloadable format. The ability to query large lists of genes at the same time provides a platform to easily analyse hits obtained from transcriptional analyses or other screens. We hope that this platform will serve as a tool to facilitate investigation of protein functions to the yeast community."],["dc.identifier.doi","10.1002/yea.3312"],["dc.identifier.pmid","29574976"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112377"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/26"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1097-0061"],["dc.relation.issn","0749-503X"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Database for High Throughput Screening Hits (dHITS): a simple tool to retrieve gene specific phenotypes from systematic screens done in yeast"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","269"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","282"],["dc.bibliographiccitation.volume","217"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Mari, Muriel"],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Rosenfeld-Gur, Eden"],["dc.contributor.author","Moldavski, Ofer"],["dc.contributor.author","Castro, Inês G."],["dc.contributor.author","Soni, Krishnakant G."],["dc.contributor.author","Harpaz, Nofar"],["dc.contributor.author","Levine, Tim P"],["dc.contributor.author","Futerman, Anthony H."],["dc.contributor.author","Reggiori, Fulvio"],["dc.contributor.author","Bankaitis, Vytas A."],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Bohnert, Maria"],["dc.date.accessioned","2022-07-04T12:38:21Z"],["dc.date.available","2022-07-04T12:38:21Z"],["dc.date.issued","2018"],["dc.description.abstract","Functional heterogeneity within the lipid droplet (LD) pool of a single cell has been observed, yet the underlying mechanisms remain enigmatic. Here, we report on identification of a specialized LD subpopulation characterized by a unique proteome and a defined geographical location at the nucleus-vacuole junction contact site. In search for factors determining identity of these LDs, we screened ∼6,000 yeast mutants for loss of targeting of the subpopulation marker Pdr16 and identified Ldo45 (LD organization protein of 45 kD) as a crucial targeting determinant. Ldo45 is the product of a splicing event connecting two adjacent genes (YMR147W and YMR148W/OSW5/LDO16). We show that Ldo proteins cooperate with the LD biogenesis component seipin and establish LD identity by defining positioning and surface-protein composition. Our studies suggest a mechanism to establish functional differentiation of organelles, opening the door to better understanding of metabolic decisions in cells."],["dc.identifier.doi","10.1083/jcb.201704122"],["dc.identifier.pmid","29187527"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112374"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/17"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Bohnert (Lipid Droplet Kommunikation)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Journal of Cell Biology"],["dc.bibliographiccitation.volume","220"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Zung, Naama"],["dc.contributor.author","Collado, Javier"],["dc.contributor.author","Drwesh, Layla"],["dc.contributor.author","Fenech, Emma J."],["dc.contributor.author","Fadel, Amir"],["dc.contributor.author","Dezorella, Nili"],["dc.contributor.author","Bykov, Yury S."],["dc.contributor.author","Rapaport, Doron"],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2021-12-01T09:21:03Z"],["dc.date.available","2021-12-01T09:21:03Z"],["dc.date.issued","2021"],["dc.description.abstract","Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease."],["dc.identifier.doi","10.1083/jcb.202104100"],["dc.identifier.pmid","34694322"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94334"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/365"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/162"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Overview
    [["dc.bibliographiccitation.firstpage","1287"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Scorrano, Luca"],["dc.contributor.author","De Matteis, Maria Antonietta"],["dc.contributor.author","Emr, Scott"],["dc.contributor.author","Giordano, Francesca"],["dc.contributor.author","Hajnóczky, György"],["dc.contributor.author","Kornmann, Benoît"],["dc.contributor.author","Lackner, Laura L."],["dc.contributor.author","Levine, Tim P."],["dc.contributor.author","Pellegrini, Luca"],["dc.contributor.author","Reinisch, Karin"],["dc.contributor.author","Rizzuto, Rosario"],["dc.contributor.author","Simmen, Thomas"],["dc.contributor.author","Stenmark, Harald"],["dc.contributor.author","Ungermann, Christian"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2022-07-11T15:29:57Z"],["dc.date.available","2022-07-11T15:29:57Z"],["dc.date.issued","2019"],["dc.description.abstract","Close proximities between organelles have been described for decades. However, only recently a specific field dealing with organelle communication at membrane contact sites has gained wide acceptance, attracting scientists from multiple areas of cell biology. The diversity of approaches warrants a unified vocabulary for the field. Such definitions would facilitate laying the foundations of this field, streamlining communication and resolving semantic controversies. This opinion, written by a panel of experts in the field, aims to provide this burgeoning area with guidelines for the experimental definition and analysis of contact sites. It also includes suggestions on how to operationally and tractably measure and analyze them with the hope of ultimately facilitating knowledge production and dissemination within and outside the field of contact-site research."],["dc.identifier.doi","10.1038/s41467-019-09253-3"],["dc.identifier.pmid","30894536"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112468"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/84"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","2041-1723"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Coming together to define membrane contact sites"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","D1245"],["dc.bibliographiccitation.issue","D1"],["dc.bibliographiccitation.journal","Nucleic Acids Research"],["dc.bibliographiccitation.lastpage","D1249"],["dc.bibliographiccitation.volume","47"],["dc.contributor.author","Dubreuil, Benjamin"],["dc.contributor.author","Sass, Ehud"],["dc.contributor.author","Nadav, Yotam"],["dc.contributor.author","Heidenreich, Meta"],["dc.contributor.author","Georgeson, Joseph M."],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Duan, Yuanqiang"],["dc.contributor.author","Meurer, Matthias"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Knop, Michael"],["dc.contributor.author","Levy, Emmanuel D."],["dc.date.accessioned","2022-07-06T07:36:35Z"],["dc.date.available","2022-07-06T07:36:35Z"],["dc.date.issued","2019"],["dc.description.abstract","The ability to measure the abundance and visualize the localization of proteins across the yeast proteome has stimulated hypotheses on gene function and fueled discoveries. While the classic C' tagged GFP yeast library has been the only resource for over a decade, the recent development of the SWAT technology has led to the creation of multiple novel yeast libraries where new-generation fluorescent reporters are fused at the N' and C' of open reading frames. Efficient access to these data requires a user interface to visualize and compare protein abundance, localization and co-localization across cells, strains, and libraries. YeastRGB (www.yeastRGB.org) was designed to address such a need, through a user-friendly interface that maximizes informative content. It employs a compact display where cells are cropped and tiled together into a 'cell-grid.' This representation enables viewing dozens of cells for a particular strain within a display unit, and up to 30 display units can be arrayed on a standard high-definition screen. Additionally, the display unit allows users to control zoom-level and overlay of images acquired using different color channels. Thus, YeastRGB makes comparing abundance and localization efficient, across thousands of cells from different strains and libraries."],["dc.identifier.doi","10.1093/nar/gky941"],["dc.identifier.pmid","30357397"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112398"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/85"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1362-4962"],["dc.relation.issn","0305-1048"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY-NC 4.0"],["dc.title","YeastRGB: comparing the abundance and localization of yeast proteins across cells and libraries"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017-10Journal Article Overview
    [["dc.bibliographiccitation.firstpage","1188"],["dc.bibliographiccitation.issue","10, Pt. B"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids"],["dc.bibliographiccitation.lastpage","1196"],["dc.bibliographiccitation.volume","1862"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Bohnert, Maria"],["dc.date.accessioned","2022-07-11T15:51:36Z"],["dc.date.available","2022-07-11T15:51:36Z"],["dc.date.issued","2017-10"],["dc.description.abstract","Lipid droplets (LDs) store lipids and hence serve as energy reservoir and as a source for building-blocks for the organelle membrane systems. LD biology therefore depends on tight communication with other organelles. The unique architecture of LDs, consisting of a neutral lipid core shielded by a phospholipid-monolayer, is however an obstacle to bulk-exchange of bilayer-bounded vesicles with other organelles. In recent years, it is emerging that contact sites, places where two organelles are positioned in close proximity allowing vesicle-independent communication, are an important way to integrate LDs into the organellar landscape. However, few LD contact sites have been studied in depth and our understanding of their structure, extent and function is only starting to emerge. Here, we highlight recent findings on the functions of LD contact sites and on the proteins involved in their formation and hypothesize about the unique characteristics of the contact sites formed by these intriguing organelles. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink."],["dc.identifier.doi","10.1016/j.bbalip.2017.06.005"],["dc.identifier.pmid","28627434"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112473"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/27"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","1388-1981"],["dc.relation.workinggroup","RG Bohnert (Lipid Droplet Kommunikation)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","A different kind of love - lipid droplet contact sites"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","130"],["dc.bibliographiccitation.journal","F1000Research"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Gabay-Maskit, Shiran"],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Zalckvar, Einat"],["dc.date.accessioned","2022-07-04T13:17:12Z"],["dc.date.available","2022-07-04T13:17:12Z"],["dc.date.issued","2018"],["dc.description.abstract","Malate dehydrogenases (Mdhs) reversibly convert malate to oxaloacetate and serve as important enzymes in several metabolic pathways. In the yeast Saccharomyces cerevisiae there are three Mdh isozymes, localized to different compartments in the cell. In order to identify specifically the Mdh2 isozyme, GenScript USA produced three different antibodies that we further tested by western blot. All three antibodies recognized the S. cerevisiae Mdh2 with different background and specificity properties. One of the antibodies had a relatively low background and high specificity and thus can be used for specific identification of Mdh2 in various experimental settings."],["dc.identifier.doi","10.12688/f1000research.13396.2"],["dc.identifier.pmid","29568493"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112376"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/21"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","2046-1402"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Validation of a yeast malate dehydrogenase 2 (Mdh2) antibody tested for use in western blots"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1761"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Shai, Nadav"],["dc.contributor.author","Yifrach, Eden"],["dc.contributor.author","van Roermund, Carlo W. T."],["dc.contributor.author","Cohen, Nir"],["dc.contributor.author","Bibi, Chen"],["dc.contributor.author","IJlst, Lodewijk"],["dc.contributor.author","Cavellini, Laetitia"],["dc.contributor.author","Meurisse, Julie"],["dc.contributor.author","Schuster, Ramona"],["dc.contributor.author","Zada, Lior"],["dc.contributor.author","Mari, Muriel C."],["dc.contributor.author","Reggiori, Fulvio M."],["dc.contributor.author","Hughes, Adam L."],["dc.contributor.author","Escobar-Henriques, Mafalda"],["dc.contributor.author","Cohen, Mickael M."],["dc.contributor.author","Waterham, Hans R."],["dc.contributor.author","Wanders, Ronald J. A."],["dc.contributor.author","Schuldiner, Maya"],["dc.contributor.author","Zalckvar, Einat"],["dc.date.accessioned","2022-07-04T13:23:53Z"],["dc.date.available","2022-07-04T13:23:53Z"],["dc.date.issued","2018"],["dc.description.abstract","The understanding that organelles are not floating in the cytosol, but rather held in an organized yet dynamic interplay through membrane contact sites, is altering the way we grasp cell biological phenomena. However, we still have not identified the entire repertoire of contact sites, their tethering molecules and functions. To systematically characterize contact sites and their tethering molecules here we employ a proximity detection method based on split fluorophores and discover four potential new yeast contact sites. We then focus on a little-studied yet highly disease-relevant contact, the Peroxisome-Mitochondria (PerMit) proximity, and uncover and characterize two tether proteins: Fzo1 and Pex34. We genetically expand the PerMit contact site and demonstrate a physiological function in β-oxidation of fatty acids. Our work showcases how systematic analysis of contact site machinery and functions can deepen our understanding of these structures in health and disease."],["dc.identifier.doi","10.1038/s41467-018-03957-8"],["dc.identifier.pmid","29720625"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112378"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/29"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.issn","2041-1723"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","370"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","379"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Weill, Uri"],["dc.contributor.author","Arakel, Eric C."],["dc.contributor.author","Goldmann, Omer"],["dc.contributor.author","Golan, Matan"],["dc.contributor.author","Chuartzman, Silvia"],["dc.contributor.author","Munro, Sean"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2020-12-10T18:36:31Z"],["dc.date.available","2020-12-10T18:36:31Z"],["dc.date.issued","2018"],["dc.description.abstract","A third of yeast genes encode for proteins that function in the endomembrane system. However, the precise localization for many of these proteins is still uncertain. Here, we visualized a collection of ~500 N-terminally, green fluorescent protein (GFP), tagged proteins of the yeast Saccharomyces cerevisiae. By co-localizing them with 7 known markers of endomembrane compartments we determined the localization for over 200 of them. Using this approach, we create a systematic database of the various secretory compartments and identify several new residents. Focusing in, we now suggest that Lam5 resides in contact sites between the endoplasmic reticulum and the late Golgi. Additionally, analysis of interactions between the COPI coat and co-localizing proteins from our screen identifies a subset of proteins that are COPI-cargo. In summary, our approach defines the protein roster within each compartment enabling characterization of the physical and functional organization of the endomembrane system and its components."],["dc.identifier.doi","10.1111/tra.12560"],["dc.identifier.pmid","29527758"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76654"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/24"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation","SFB 1190 | Z03: Synthetische genetische Analyse, automatisierte Mikroskopie und Bildanalyse"],["dc.relation.issn","1398-9219"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.title","Toolbox: Creating a systematic database of secretory pathway proteins uncovers new cargo for COPI"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC