Now showing 1 - 4 of 4
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","392"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Ecology Letters"],["dc.bibliographiccitation.lastpage","401"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Kirchheimer, Bernhard"],["dc.contributor.author","Wessely, Johannes"],["dc.contributor.author","Gattringer, Andreas"],["dc.contributor.author","Hülber, Karl"],["dc.contributor.author","Moser, Dietmar"],["dc.contributor.author","Schinkel, Christoph C. F."],["dc.contributor.author","Appelhans, Marc"],["dc.contributor.author","Klatt, Simone"],["dc.contributor.author","Caccianiga, Marco"],["dc.contributor.author","Dellinger, Agnes"],["dc.contributor.author","Guisan, Antoine"],["dc.contributor.author","Kuttner, Michael"],["dc.contributor.author","Lenoir, Jonathan"],["dc.contributor.author","Maiorano, Luigi"],["dc.contributor.author","Nieto-Lugilde, Diego"],["dc.contributor.author","Plutzar, Christoph"],["dc.contributor.author","Svenning, Jens-Christian"],["dc.contributor.author","Willner, Wolfgang"],["dc.contributor.author","Hörandl, Elvira"],["dc.contributor.author","Dullinger, Stefan"],["dc.date.accessioned","2019-07-09T11:45:27Z"],["dc.date.available","2019-07-09T11:45:27Z"],["dc.date.issued","2018"],["dc.description.abstract","Asexual taxa often have larger ranges than their sexual progenitors, particularly in areas affected by Pleistocene glaciations. The reasons given for this 'geographical parthenogenesis' are contentious, with expansion of the ecological niche or colonisation advantages of uniparental reproduction assumed most important in case of plants. Here, we parameterized a spread model for the alpine buttercup Ranunculus kuepferi and reconstructed the joint Holocene range expansion of its sexual and apomictic cytotype across the European Alps under different simulation settings. We found that, rather than niche broadening or a higher migration rate, a shift of the apomict's niche towards colder conditions per se was crucial as it facilitated overcoming of topographical barriers, a factor likely relevant for many alpine apomicts. More generally, our simulations suggest potentially strong interacting effects of niche differentiation and reproductive modes on range formation of related sexual and asexual taxa arising from their differential sensitivity to minority cytotype disadvantage."],["dc.identifier.doi","10.1111/ele.12908"],["dc.identifier.pmid","29349850"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15210"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59232"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/310886/EU//HISTFUNC"],["dc.relation.issn","1461-0248"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.title","Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","14435"],["dc.bibliographiccitation.issue","24"],["dc.bibliographiccitation.journal","Ecology and Evolution"],["dc.bibliographiccitation.lastpage","14450"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Karbstein, Kevin"],["dc.contributor.author","Rahmsdorf, Elisabeth"],["dc.contributor.author","Tomasello, Salvatore"],["dc.contributor.author","Hodač, Ladislav"],["dc.contributor.author","Hörandl, Elvira"],["dc.date.accessioned","2021-04-14T08:30:57Z"],["dc.date.available","2021-04-14T08:30:57Z"],["dc.date.issued","2020"],["dc.description.abstract","Abstract The larger distribution area of asexuals compared with their sexual relatives in geographical parthenogenesis (GP) scenarios has been widely attributed to the advantages of uniparental reproduction and polyploidy. However, potential disadvantages of sexuals due to their breeding system have received little attention so far. Here, we study the breeding system of five narrowly distributed sexual lineages of Ranunculus notabilis s.l. (R. auricomus complex) and its effects on outcrossing, inbreeding, female fitness, and heterozygosity. We performed selfing and intra‐ and interlineage crossings by bagging 481 flowers (59 garden individuals) followed by germination experiments. We compared seed set and germination rates, and related them to genetic distance and genome‐wide heterozygosity (thousands of RADseq loci). Selfings (2.5%) unveiled a significantly lower seed set compared with intra‐ (69.0%) and interlineage crossings (69.5%). Seed set of intra‐ (65%) compared to interpopulation crossings (78%) was significantly lower. In contrast, all treatments showed comparable germination rates (32%–43%). Generalized linear regressions between seed set and genetic distance revealed positive relationships in general and between lineages, and a negative one within lineages. Seed set was the main decisive factor for female fitness. Germination rates were not related to genetic distance at any level, but were positively associated with heterozygosity in interlineage crossings. Experiments confirmed full crossability and predominant outcrossing among sexual R. notabilis s.l. lineages. However, up to 5% (outliers 15%–31%) of seeds were formed by selfing, probably due to semi‐self‐compatibility in a multi‐locus gametophytic SI system. Less seed set in intrapopulation crossings, and higher seed set and germination rates from crossings of genetically more distant and heterozygous lineages (interlineage) indicate negative inbreeding and positive outbreeding effects. In GP scenarios, sexual species with small and/or isolated populations can suffer from decreased female fitness due to their breeding system. This factor, among others, probably limits range expansion of sexuals."],["dc.description.abstract","Potential disadvantages of sexual plant species due to their breeding system have received little attention in geographical parthenogenesis (GP) scenarios so far. We compared seed set and germination rates of five sexual lineages of Ranunculus notabilis s.l (R. auricomus complex) and related them to genetic distance and genome‐wide heterozygosity. Results suggest that inbreeding depression particularly affects intrapopulation (intralineage) crossings, and that positive outbreeding effects particularly influence interlineage crossings. In GP scenarios, sexual species with small and/or isolated populations can suffer from decreased female fitness due to their breeding system. image"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1002/ece3.7073"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17784"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83429"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/17835 but duplicate"],["dc.relation.eissn","2045-7758"],["dc.relation.issn","2045-7758"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","570"],["dc.title","Breeding system of diploid sexuals within the Ranunculus auricomus complex and its role in a geographical parthenogenesis scenario"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","8243"],["dc.bibliographiccitation.issue","16"],["dc.bibliographiccitation.journal","Ecology and Evolution"],["dc.bibliographiccitation.lastpage","8255"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Wagner, Natascha Dorothea"],["dc.contributor.author","Gramlich, Susanne"],["dc.contributor.author","Hörandl, Elvira"],["dc.date.accessioned","2019-07-09T11:45:57Z"],["dc.date.available","2019-07-09T11:45:57Z"],["dc.date.issued","2018"],["dc.description.abstract","The large and diverse genus Salix L. is of particular interest for decades of biological research. However, despite the morphological plasticity, the reconstruction of phylogenetic relationships was so far hampered by the lack of informative molecular markers. Infrageneric classification based on morphology separates dwarf shrubs (subg. Chamaetia) and taller shrubs (subg. Vetrix), while previous phylogenetic studies placed species of these two subgenera just in one largely unresolved clade. Here we want to test the utility of genomic RAD sequencing markers for resolving relationships at different levels of divergence in Salix. Based on a sampling of 15 European species representing 13 sections of the two subgenera, we used five different RAD sequencing datasets generated by ipyrad to conduct phylogenetic analyses. Additionally we reconstructed the evolution of growth form and analyzed the genetic composition of the whole clade. The results showed fully resolved trees in both ML and BI analysis with high statistical support. The two subgenera Chamaetia and Vetrix were recognized as nonmonophyletic, which suggests that they should be merged. Within the Vetrix/Chamaetia clade, a division into three major subclades could be observed. All species were confirmed to be monophyletic. Based on our data, arctic-alpine dwarf shrubs evolved four times independently. The structure analysis showed five mainly uniform genetic clusters which are congruent in sister relationships observed in the phylogenies. Our study confirmed RAD sequencing as a useful genomic tool for the reconstruction of relationships on different taxonomic levels in the genus Salix."],["dc.identifier.doi","10.1002/ece3.4360"],["dc.identifier.pmid","30250699"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15355"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59346"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2045-7758"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.title","RAD sequencing resolved phylogenetic relationships in European shrub willows (Salix L. subg. Chamaetia and subg. Vetrix) and revealed multiple evolution of dwarf shrubs"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article
    [["dc.bibliographiccitation.artnumber","1111"],["dc.bibliographiccitation.journal","Frontiers in Plant Science"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Barke, Birthe H."],["dc.contributor.author","Daubert, Mareike"],["dc.contributor.author","Hörandl, Elvira"],["dc.date.accessioned","2019-07-09T11:45:43Z"],["dc.date.available","2019-07-09T11:45:43Z"],["dc.date.issued","2018"],["dc.description.abstract","Hybridization and polyploidization play important roles in plant evolution but it is still not fully clarified how these evolutionary forces contribute to the establishment of apomicts. Apomixis, the asexual reproduction via seed formation, comprises several essential alterations in development compared to the sexual pathway. Furthermore, most natural apomicts were found to be polyploids and/or hybrids. The Ranunculus auricomus complex comprises diploid sexual and polyploid apomictic species and represents an excellent model system to gain knowledge on origin and evolution of apomixis in natural plant populations. In this study, the second generation of synthetically produced homoploid (2x) and heteroploid (3x) hybrids derived from sexual R. auricomus species was analyzed for aposporous initial cell formation by DIC microscopy. Complete manifestation of apomixis was determined by measuring single mature seeds by flow cytometric seed screen. Microscopic analysis of the female gametophyte formation indicated spontaneous occurrence of aposporous initial cells and several developmental irregularities. The frequency of apospory was found to depend on dosage effects since a significant increase in apospory was observed, when both F1 parents, rather than just one, were aposporous. Other than in the F1 generation, diploid Ranunculus F2 hybrids formed BIII seeds and fully apomictic seeds. The results indicate that hybridization rather than polyploidization seems to be the functional activator of apomictic reproduction in the synthetic Ranunculus hybrids. In turn, at least two hybrid generations are required to establish apomictic seed formation."],["dc.identifier.doi","10.3389/fpls.2018.01111"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15296"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59296"],["dc.language.iso","en"],["dc.notes.intern","DeepGreen Import"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","1664-462X"],["dc.relation.issn","1664-462X"],["dc.rights","http://creativecommons.org/licenses/by/4.0/"],["dc.subject.ddc","570"],["dc.title","Establishment of Apomixis in Diploid F2 Hybrids and Inheritance of Apospory From F1 to F2 Hybrids of the Ranunculus auricomus Complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI