Options
Cooper, Benjamin Hillman
Loading...
Preferred name
Cooper, Benjamin Hillman
Official Name
Cooper, Benjamin Hillman
Alternative Name
Cooper, Benjamin H.
Cooper, B. H.
Cooper, Ben
Cooper, Benjamin
Cooper, B.
Main Affiliation
Now showing 1 - 10 of 12
2021Journal Article [["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Tawfik, Bassam"],["dc.contributor.author","Martins, Joana S."],["dc.contributor.author","Houy, Sébastien"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Pinheiro, Paulo S."],["dc.contributor.author","Wojcik, Sonja M."],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Sørensen, Jakob Balslev"],["dc.date.accessioned","2022-03-01T11:44:34Z"],["dc.date.available","2022-03-01T11:44:34Z"],["dc.date.issued","2021"],["dc.description.abstract","Synaptotagmins confer calcium-dependence to the exocytosis of secretory vesicles, but how coexpressed synaptotagmins interact remains unclear. We find that synaptotagmin-1 and synaptotagmin-7 when present alone act as standalone fast and slow Ca 2+ -sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-1 and synaptotagmin-7 are found in largely non-overlapping clusters on dense-core vesicles. Synaptotagmin-7 stimulates Ca 2+ -dependent vesicle priming and inhibits depriming, and it promotes ubMunc13-2- and phorbolester-dependent priming, especially at low resting calcium concentrations. The priming effect of synaptotagmin-7 increases the number of vesicles fusing via synaptotagmin-1, while negatively affecting their fusion speed, indicating both synergistic and competitive interactions between synaptotagmins. Synaptotagmin-7 places vesicles in close membrane apposition (<6 nm); without it, vesicles accumulate out of reach of the fusion complex (20–40 nm). We suggest that a synaptotagmin-7-dependent movement toward the membrane is involved in Munc13-2/phorbolester/Ca 2+ -dependent priming as a prelude to fast and slow exocytosis triggering."],["dc.description.abstract","Synaptotagmins confer calcium-dependence to the exocytosis of secretory vesicles, but how coexpressed synaptotagmins interact remains unclear. We find that synaptotagmin-1 and synaptotagmin-7 when present alone act as standalone fast and slow Ca 2+ -sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-1 and synaptotagmin-7 are found in largely non-overlapping clusters on dense-core vesicles. Synaptotagmin-7 stimulates Ca 2+ -dependent vesicle priming and inhibits depriming, and it promotes ubMunc13-2- and phorbolester-dependent priming, especially at low resting calcium concentrations. The priming effect of synaptotagmin-7 increases the number of vesicles fusing via synaptotagmin-1, while negatively affecting their fusion speed, indicating both synergistic and competitive interactions between synaptotagmins. Synaptotagmin-7 places vesicles in close membrane apposition (<6 nm); without it, vesicles accumulate out of reach of the fusion complex (20–40 nm). We suggest that a synaptotagmin-7-dependent movement toward the membrane is involved in Munc13-2/phorbolester/Ca 2+ -dependent priming as a prelude to fast and slow exocytosis triggering."],["dc.identifier.doi","10.7554/eLife.64527"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103054"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","2050-084X"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca2+-dependent priming"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2014Journal Article Erratum [["dc.bibliographiccitation.firstpage","882"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.volume","84"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Min, Sang-Won"],["dc.contributor.author","Krinner, Stefanie"],["dc.contributor.author","Arancillo, Marife"],["dc.contributor.author","Rosenmund, Christian"],["dc.contributor.author","Südhof, Thomas C."],["dc.contributor.author","Rhee, JeongSeop"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Cooper, Benjamin H."],["dc.date.accessioned","2022-03-01T11:45:21Z"],["dc.date.available","2022-03-01T11:45:21Z"],["dc.date.issued","2014"],["dc.identifier.doi","10.1016/j.neuron.2014.11.003"],["dc.identifier.pii","S0896627314010034"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103296"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0896-6273"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","erratum_ja"],["dspace.entity.type","Publication"]]Details DOI2012Journal Article Research Paper [["dc.bibliographiccitation.firstpage","8040"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","The Journal of Neuroscience"],["dc.bibliographiccitation.lastpage","8052"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Cooper, Benjamin"],["dc.contributor.author","Hemmerlein, Maike"],["dc.contributor.author","Ammermüller, Josef"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Lipstein, Noa"],["dc.contributor.author","Kalla, Stefan"],["dc.contributor.author","Kawabe, Hiroshi"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Brandstätter, Johann Helmut"],["dc.contributor.author","Varoqueaux, Frédérique"],["dc.date.accessioned","2017-09-07T11:48:51Z"],["dc.date.available","2017-09-07T11:48:51Z"],["dc.date.issued","2012"],["dc.description.abstract","Munc13 proteins are essential regulators of exocytosis. In hippocampal glutamatergic neurons, the genetic deletion of Munc13s results in the complete loss of primed synaptic vesicles (SVs) in direct contact with the presynaptic active zone membrane, and in a total block of neurotransmitter release. Similarly drastic consequences of Munc13 loss are detectable in hippocampal and striatal GABAergic neurons. We show here that, in the adult mouse retina, the two Munc13-2 splice variants bMunc13-2 and ubMunc13-2 are selectively localized to conventional and ribbon synapses, respectively, and that ubMunc13-2 is the only Munc13 isoform in mature photoreceptor ribbon synapses. Strikingly, the genetic deletion of ubMunc13-2 has little effect on synaptic signaling by photoreceptor ribbon synapses and does not prevent membrane attachment of synaptic vesicles at the photoreceptor ribbon synaptic site. Thus, photoreceptor ribbon synapses and conventional synapses differ fundamentally with regard to their dependence on SV priming proteins of the Munc13 family. Their function is only moderately affected by Munc13 loss, which leads to slight perturbations of signal integration in the retina."],["dc.identifier.doi","10.1523/JNEUROSCI.4240-11.2012"],["dc.identifier.gro","3142521"],["dc.identifier.isi","000305091800028"],["dc.identifier.pmid","22674279"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8881"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0270-6474"],["dc.title","Munc13-Independent Vesicle Priming at Mouse Photoreceptor Ribbon Synapses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3632"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","3643.e8"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Maus, Lydia"],["dc.contributor.author","Lee, ChoongKu"],["dc.contributor.author","Altas, Bekir"],["dc.contributor.author","Sertel, Sinem M."],["dc.contributor.author","Weyand, Kirsten"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Rhee, JeongSeop"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Cooper, Benjamin H."],["dc.date.accessioned","2020-12-10T14:23:02Z"],["dc.date.available","2020-12-10T14:23:02Z"],["dc.date.issued","2020"],["dc.description.abstract","Although similar in molecular composition, synapses can exhibit strikingly distinct functional transmitter release and plasticity characteristics. To determine whether ultrastructural differences co-define this functional heterogeneity, we combine hippocampal organotypic slice cultures, high-pressure freezing, freeze substitution, and 3D-electron tomography to compare two functionally distinct synapses: hippocampal Schaffer collateral and mossy fiber synapses. We find that mossy fiber synapses, which exhibit a lower release probability and stronger short-term facilitation than Schaffer collateral synapses, harbor lower numbers of docked synaptic vesicles at active zones and a second pool of possibly tethered vesicles in their vicinity. Our data indicate that differences in the ratio of docked versus tethered vesicles at active zones contribute to distinct functional characteristics of synapses."],["dc.identifier.doi","10.1016/j.celrep.2020.02.083"],["dc.identifier.pmid","32187536"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71813"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/51"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/36"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A01: Die Ultrastruktur der Synapse in Aktion"],["dc.relation.workinggroup","RG Brose"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.relation.workinggroup","RG Cooper"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Ultrastructural Correlates of Presynaptic Functional Heterogeneity in Hippocampal Synapses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article [["dc.bibliographiccitation.firstpage","304"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.lastpage","311.e4"],["dc.bibliographiccitation.volume","94"],["dc.contributor.author","Sigler, Albrecht"],["dc.contributor.author","Oh, Won Chan"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Altas, Bekir"],["dc.contributor.author","Kawabe, Hiroshi"],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Kwon, Hyung-Bae"],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Brose, Nils"],["dc.date.accessioned","2018-03-08T09:21:30Z"],["dc.date.available","2018-03-08T09:21:30Z"],["dc.date.issued","2017"],["dc.description.abstract","Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release."],["dc.identifier.doi","10.1016/j.neuron.2017.03.029"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/12901"],["dc.language.iso","en"],["dc.notes.intern","GRO-Li-Import"],["dc.notes.status","final"],["dc.relation.doi","10.1016/j.neuron.2017.03.029"],["dc.relation.issn","0896-6273"],["dc.title","Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2019Preprint [["dc.contributor.author","Maus, Lydia"],["dc.contributor.author","Altas, Bekir"],["dc.contributor.author","Rhee, JeongSeop"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Cooper, Benjamin H."],["dc.date.accessioned","2022-08-26T07:13:13Z"],["dc.date.available","2022-08-26T07:13:13Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1101/588848"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113244"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/16"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A01: Die Ultrastruktur der Synapse in Aktion"],["dc.relation.workinggroup","RG Brose"],["dc.relation.workinggroup","RG Cooper"],["dc.title","Correlating Synaptic Ultrastructure and Function at the Nanoscale"],["dc.type","preprint"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2010Book Chapter [["dc.bibliographiccitation.firstpage","475"],["dc.bibliographiccitation.lastpage","512"],["dc.bibliographiccitation.seriesnr","96"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Cooper, Benjamin"],["dc.contributor.author","Kaufmann, Walter A."],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Ruhwedel, Torben"],["dc.contributor.author","Snaidero, Nicolas"],["dc.contributor.author","Saab, Aiman S."],["dc.contributor.author","Varoqueaux, Frédérique"],["dc.date.accessioned","2022-03-01T11:45:29Z"],["dc.date.available","2022-03-01T11:45:29Z"],["dc.date.issued","2010"],["dc.identifier.doi","10.1016/S0091-679X(10)96020-2"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103344"],["dc.notes.intern","DOI-Import GROB-531"],["dc.publisher","Elsevier"],["dc.relation.crisseries","Methods in Cell Biology"],["dc.relation.isbn","9780123810076"],["dc.relation.ispartof","Electron Microscopy of Model Systems"],["dc.title","Electron Microscopy of the Mouse Central Nervous System"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","416"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Neuron"],["dc.bibliographiccitation.lastpage","431"],["dc.bibliographiccitation.volume","84"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Min, Sang-Won"],["dc.contributor.author","Krinner, Stefanie"],["dc.contributor.author","Arancillo, Marife"],["dc.contributor.author","Rosenmund, Christian"],["dc.contributor.author","Südhof, Thomas C."],["dc.contributor.author","Rhee, JeongSeop"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Cooper, Benjamin H."],["dc.date.accessioned","2017-09-07T11:45:27Z"],["dc.date.available","2017-09-07T11:45:27Z"],["dc.date.issued","2014"],["dc.description.abstract","Synaptic vesicle docking, priming, and fusion at active zones are orchestrated by a complex molecular machinery. We employed hippocampal organotypic slice cultures from mice lacking key presynaptic proteins, cryofixation, and three-dimensional electron tomography to study the mechanism of synaptic vesicle docking in the same experimental setting, with high precision, and in a near-native state. We dissected previously indistinguishable, sequential steps in synaptic vesicle active zone recruitment (tethering) and membrane attachment (docking) and found that vesicle docking requires Munc13/CAPS family priming proteins and all three neuronal SNAREs, but not Synaptotagmin-1 or Complexins. Our data indicate that membrane-attached vesicles comprise the readily releasable pool of fusion-competent vesicles and that synaptic vesicle docking, priming, and trans-SNARE complex assembly are the respective morphological, functional, and molecular manifestations of the same process, which operates downstream of vesicle tethering by active zone components."],["dc.identifier.doi","10.1016/j.neuron.2014.10.009"],["dc.identifier.gro","3142032"],["dc.identifier.isi","000344167900020"],["dc.identifier.pmid","25374362"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3790"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1097-4199"],["dc.relation.issn","0896-6273"],["dc.title","The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2019Journal Article [["dc.bibliographiccitation.firstpage","1011"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","1026"],["dc.bibliographiccitation.volume","218"],["dc.contributor.author","Scholz, Nicole"],["dc.contributor.author","Ehmann, Nadine"],["dc.contributor.author","Sachidanandan, Divya"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Meyer, Jutta"],["dc.contributor.author","Lamberty, Marius"],["dc.contributor.author","Altrichter, Steffen"],["dc.contributor.author","Bormann, Anne"],["dc.contributor.author","Hallermann, Stefan"],["dc.contributor.author","Pauli, Martin"],["dc.contributor.author","Heckmann, Manfred"],["dc.contributor.author","Stigloher, Christian"],["dc.contributor.author","Langenhan, Tobias"],["dc.contributor.author","Kittel, Robert J."],["dc.date.accessioned","2020-12-10T18:15:36Z"],["dc.date.available","2020-12-10T18:15:36Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1083/jcb.201806155"],["dc.identifier.eissn","1540-8140"],["dc.identifier.issn","0021-9525"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74898"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Complexin cooperates with Bruchpilot to tether synaptic vesicles to the active zone cytomatrix"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2239"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","2250"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Mortensen, Lena S."],["dc.contributor.author","Park, Silvia J.H."],["dc.contributor.author","Ke, Jiang-bin"],["dc.contributor.author","Cooper, Benjamin H."],["dc.contributor.author","Zhang, Lei"],["dc.contributor.author","Imig, Cordelia"],["dc.contributor.author","Löwel, Siegrid"],["dc.contributor.author","Reim, Kerstin"],["dc.contributor.author","Brose, Nils"],["dc.contributor.author","Demb, Jonathan B."],["dc.contributor.author","Rhee, Jeong-Seop"],["dc.contributor.author","Singer, Joshua H."],["dc.date.accessioned","2017-09-07T11:44:51Z"],["dc.date.available","2017-09-07T11:44:51Z"],["dc.date.issued","2016"],["dc.description.abstract","Complexin (Cplx) proteins modulate the core SNARE complex to regulate exocytosis. To understand the contributions of Cplx to signaling in a well-characterized neural circuit, we investigated how Cplx3, a retina-specific paralog, shapes transmission at rod bipolar (RB)-> AII amacrine cell synapses in the mouse retina. Knockout of Cplx3 strongly attenuated fast, phasic Ca2+-dependent transmission, dependent on local [Ca2+] nanodomains, but enhanced slower Ca2+-dependent transmission, dependent on global intraterminal [Ca2+] ([Ca2+](I)). Surprisingly, coordinated multivesicular release persisted at Cplx3(-/-) synapses, although its onset was slowed. Light-dependent signaling at Cplx3(-/-) RB -> AII synapses was sluggish, owing largely to increased asynchronous release at light offset. Consequently, propagation of RB output to retinal ganglion cells was suppressed dramatically. Our study links Cplx3 expression with synapse and circuit function in a specific retinal pathway and reveals a role for asynchronous release in circuit gain control."],["dc.identifier.doi","10.1016/j.celrep.2016.05.012"],["dc.identifier.gro","3141669"],["dc.identifier.isi","000377776300014"],["dc.identifier.pmid","27239031"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13471"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7452"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2211-1247"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Complexin 3 Increases the Fidelity of Signaling in a Retinal Circuit by Regulating Exocytosis at Ribbon Synapses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS