Now showing 1 - 3 of 3
  • 2009Journal Article
    [["dc.bibliographiccitation.artnumber","P152"],["dc.bibliographiccitation.issue","Suppl 1"],["dc.bibliographiccitation.journal","BMC Neuroscience"],["dc.bibliographiccitation.lastpage","2"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Kriener, Birgit"],["dc.contributor.author","Timme, Marc"],["dc.date.accessioned","2011-04-14T14:19:54Z"],["dc.date.accessioned","2021-10-11T11:24:54Z"],["dc.date.available","2011-04-14T14:19:54Z"],["dc.date.available","2021-10-11T11:24:54Z"],["dc.date.issued","2009"],["dc.identifier.citation","Kriener, Birgit; Timme, Marc (2009): How network structure shapes pairwise correlations between integrate-and-fire neurons - BMC Neuroscience, Vol. 10, Nr. Suppl 1, p. P152-"],["dc.identifier.doi","10.1186/1471-2202-10-S1-P152"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6133"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/90530"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","Goescholar"],["dc.rights.access","openAccess"],["dc.rights.uri","http://goedoc.uni-goettingen.de/licenses"],["dc.subject","network structure"],["dc.subject.ddc","530"],["dc.subject.ddc","573"],["dc.subject.ddc","573.8"],["dc.subject.ddc","612"],["dc.subject.ddc","612.8"],["dc.title","How network structure shapes pairwise correlations between integrate-and-fire neurons"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.artnumber","093002"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","New Journal of Physics"],["dc.bibliographiccitation.volume","14"],["dc.contributor.affiliation","Kriener, Birgit;"],["dc.contributor.affiliation","Anand, Lishma;"],["dc.contributor.affiliation","Timme, Marc;"],["dc.contributor.author","Kriener, Birgit"],["dc.contributor.author","Anand, Lishma"],["dc.contributor.author","Timme, Marc"],["dc.date.accessioned","2018-11-07T09:05:58Z"],["dc.date.available","2018-11-07T09:05:58Z"],["dc.date.issued","2012"],["dc.date.updated","2022-02-10T06:02:21Z"],["dc.description.abstract","Synchrony prevalently emerges from the interactions of coupled dynamical units. For simple systems such as networks of phase oscillators, the asymptotic synchronization process is assumed to be equivalent to a Markov process that models standard diffusion or random walks on the same network topology. In this paper, we analytically derive the conditions for such equivalence for networks of pulse-coupled oscillators, which serve as models for neurons and pacemaker cells interacting by exchanging electric pulses or fireflies interacting via light flashes. We find that the pulse synchronization process is less simple, but there are classes of, e. g., network topologies that ensure equivalence. In particular, local dynamical operators are required to be doubly stochastic. These results provide a natural link between stochastic processes and deterministic synchronization on networks. Tools for analyzing diffusion (or, more generally, Markov processes) may now be transferred to pin down features of synchronization in networks of pulse-coupled units such as neural circuits."],["dc.identifier.doi","10.1088/1367-2630/14/9/093002"],["dc.identifier.eissn","1367-2630"],["dc.identifier.fs","599417"],["dc.identifier.isi","000308742800002"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9983"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25449"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","IOP Publishing"],["dc.relation.issn","1367-2630"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","CC BY-NC-SA 3.0"],["dc.rights.uri","http://creativecommons.org/licenses/by-nc-sa/3.0/"],["dc.title","Complex networks: when random walk dynamics equals synchronization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2011Journal Article
    [["dc.bibliographiccitation.artnumber","3"],["dc.bibliographiccitation.journal","Frontiers in Computational Neuroscience"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","van Bussel, Frank"],["dc.contributor.author","Kriener, Birgit"],["dc.contributor.author","Timme, Marc"],["dc.date.accessioned","2018-11-07T08:59:22Z"],["dc.date.available","2018-11-07T08:59:22Z"],["dc.date.issued","2011"],["dc.description.abstract","Networks of well-known dynamical units but unknown interaction topology arise across various fields of biology, including genetics, ecology, and neuroscience. The collective dynamics of such networks is often sensitive to the presence (or absence) of individual interactions, but there is usually no direct way to probe for their existence. Here we present an explicit method for reconstructing interaction networks of leaky integrate-and-fire neurons from the spike patterns they exhibit in response to external driving. Given the dynamical parameters are known, the approach works well for networks in simple collective states but is also applicable to networks exhibiting complex spatio-temporal spike patterns. In particular, stationarity of spiking time series is not required."],["dc.description.sponsorship","Federal Ministry of Education and Research (BMBF) Germany [01GQ1005B]"],["dc.identifier.doi","10.3389/fncom.2011.00003"],["dc.identifier.isi","000289431900001"],["dc.identifier.pmid","21344004"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23873"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Frontiers Res Found"],["dc.relation.issn","1662-5188"],["dc.title","Inferring synaptic connectivity from spatio-temporal spike patterns"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS