Options
Brakemann, Tanja
Loading...
Preferred name
Brakemann, Tanja
Official Name
Brakemann, Tanja
Alternative Name
Brakemann, T.
Now showing 1 - 2 of 2
2012Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e00248"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.lastpage","14"],["dc.bibliographiccitation.volume","1"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Testa, Ilaria"],["dc.contributor.author","Reuss, Matthias"],["dc.contributor.author","Brakemann, Tanja"],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2017-09-07T11:48:20Z"],["dc.date.available","2017-09-07T11:48:20Z"],["dc.date.issued","2012"],["dc.description.abstract","The super-resolution microscopy called RESOLFT relying on fluorophore switching between longlived states, stands out by its coordinate-targeted sequential sample interrogation using low light levels. While RESOLFT has been shown to discern nanostructures in living cells, the reversibly photoswitchable green fluorescent protein (rsEGFP) employed in these experiments was switched rather slowly and recording lasted tens of minutes. We now report on the generation of rsEGFP2 providing faster switching and the use of this protein to demonstrate 25-250 times faster recordings."],["dc.identifier.doi","10.7554/eLife.00248"],["dc.identifier.gro","3142424"],["dc.identifier.isi","000328585000001"],["dc.identifier.pmid","23330067"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10590"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8130"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2050-084X"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","rsEGFP2 enables fast RESOLFT nanoscopy of living cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article Research Paper [["dc.bibliographiccitation.firstpage","942"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Nature Biotechnology"],["dc.bibliographiccitation.lastpage","U132"],["dc.bibliographiccitation.volume","29"],["dc.contributor.author","Brakemann, Tanja"],["dc.contributor.author","Stiel, Andre C."],["dc.contributor.author","Weber, Gert"],["dc.contributor.author","Andresen, Martin"],["dc.contributor.author","Testa, Ilaria"],["dc.contributor.author","Grotjohann, Tim"],["dc.contributor.author","Leutenegger, Marcel"],["dc.contributor.author","Plessmann, Uwe"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Wahl, Markus C."],["dc.contributor.author","Hell, Stefan"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2017-09-07T11:43:22Z"],["dc.date.available","2017-09-07T11:43:22Z"],["dc.date.issued","2011"],["dc.description.abstract","Photoswitchable fluorescent proteins have enabled new approaches for imaging cells, but their utility has been limited either because they cannot be switched repeatedly or because the wavelengths for switching and fluorescence imaging are strictly coupled. We report a bright, monomeric, reversibly photoswitchable variant of GFP, Dreiklang, whose fluorescence excitation spectrum is decoupled from that for optical switching. Reversible on-and-off switching in living cells is accomplished at illumination wavelengths of similar to 365 nm and similar to 405 nm, respectively, whereas fluorescence is elicited at similar to 515 nm. Mass spectrometry and high-resolution crystallographic analysis of the same protein crystal in the photoswitched on- and off-states demonstrate that switching is based on a reversible hydration/dehydration reaction that modifies the chromophore. The switching properties of Dreiklang enable far-field fluorescence nanoscopy in living mammalian cells using both a coordinate-targeted and a stochastic single molecule switching approach."],["dc.identifier.doi","10.1038/nbt.1952"],["dc.identifier.gro","3142656"],["dc.identifier.isi","000296273000022"],["dc.identifier.pmid","21909082"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Nature Publishing Group"],["dc.relation.eissn","1546-1696"],["dc.relation.issn","1087-0156"],["dc.title","A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS