Options
Pieske, Burkert M.
Loading...
Preferred name
Pieske, Burkert M.
Official Name
Pieske, Burkert M.
Alternative Name
Pieske, B. M.
Pieske, Burkert Mathias
Pieske, B.
Pieske, Burkert
Now showing 1 - 3 of 3
2021-05-17Journal Article Research Paper [["dc.bibliographiccitation.artnumber","60"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Cardiovascular Magnetic Resonance"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Metschies, Georg"],["dc.contributor.author","Billing, Marcus"],["dc.contributor.author","Schmidt-Rimpler, Jonas"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Gertz, Roman J."],["dc.contributor.author","Lapinskas, Tomas"],["dc.contributor.author","Pieske-Kraigher, Elisabeth"],["dc.contributor.author","Pieske, Burkert"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Kelle, Sebastian"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Backhaus, Sören J."],["dc.date.accessioned","2021-11-25T11:12:48Z"],["dc.date.available","2021-11-25T11:12:48Z"],["dc.date.issued","2021-05-17"],["dc.date.updated","2021-11-19T12:47:36Z"],["dc.description.abstract","Abstract Background Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing. Methods Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 × 1.5 mm through-plane 5 mm, standard 1.8 × 1.8 x 8mm and low 3.0 × 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS. Results Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001–0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001–0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution. Conclusion Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.citation","Journal of Cardiovascular Magnetic Resonance. 2021 May 17;23(1):60"],["dc.identifier.doi","10.1186/s12968-021-00740-5"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/93537"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.publisher","BioMed Central"],["dc.relation.eissn","1532-429X"],["dc.relation.orgunit","Klinik für Kardiologie und Pneumologie"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.subject","Myocardial deformation"],["dc.subject","Strain"],["dc.subject","Cardiovascular magnetic resonance"],["dc.subject","Temporal resolution"],["dc.subject","Spatial resolution"],["dc.subject","Reproducibility"],["dc.title","Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","11648"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Stehning, Christian"],["dc.contributor.author","Billing, Marcus"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Pieske, Burkert"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Kelle, Sebastian"],["dc.contributor.author","Kowallick, Johannes T."],["dc.date.accessioned","2021-07-05T15:00:34Z"],["dc.date.available","2021-07-05T15:00:34Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Cardiovascular magnetic resonance (CMR) imaging provides reliable assessments of biventricular morphology and function. Since manual post-processing is time-consuming and prone to observer variability, efforts have been directed towards novel artificial intelligence-based fully automated analyses. Hence, we sought to investigate the impact of artificial intelligence-based fully automated assessments on the inter-study variability of biventricular volumes and function. Eighteen participants (11 with normal, 3 with heart failure and preserved and 4 with reduced ejection fraction (EF)) underwent serial CMR imaging at in median 63 days (range 49–87) interval. Short axis cine stacks were acquired for the evaluation of left ventricular (LV) mass, LV and right ventricular (RV) end-diastolic, end-systolic and stroke volumes as well as EF. Assessments were performed manually (QMass, Medis Medical Imaging Systems, Leiden, Netherlands) by an experienced (3 years) and inexperienced reader (no active reporting, 45 min of training with five cases from the SCMR consensus data) as well as fully automated (suiteHEART, Neosoft, Pewaukee, WI, USA) without any manual corrections. Inter-study reproducibility was overall excellent with respect to LV volumetric indices, best for the experienced observer (intraclass correlation coefficient (ICC) > 0.98, coefficient of variation (CoV, < 9.6%) closely followed by automated analyses (ICC > 0.93, CoV < 12.4%) and lowest for the inexperienced observer (ICC > 0.86, CoV < 18.8%). Inter-study reproducibility of RV volumes was excellent for the experienced observer (ICC > 0.88, CoV < 10.7%) but considerably lower for automated and inexperienced manual analyses (ICC > 0.69 and > 0.46, CoV < 22.8% and < 28.7% respectively). In this cohort, fully automated analyses allowed reliable serial investigations of LV volumes with comparable inter-study reproducibility to manual analyses performed by an experienced CMR observer. In contrast, RV automated quantification with current algorithms still relied on manual post-processing for reliability."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41598-021-90702-9"],["dc.identifier.pii","90702"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87853"],["dc.language.iso","en"],["dc.notes.intern","DOI Import DOI-Import GROB-441"],["dc.relation.eissn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.title","Impact of fully automated assessment on interstudy reproducibility of biventricular volumes and function in cardiac magnetic resonance imaging"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.artnumber","e0210127"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Metschies, Georg"],["dc.contributor.author","Billing, Marcus"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Gertz, Roman J."],["dc.contributor.author","Lapinskas, Tomas"],["dc.contributor.author","Pieske, Burkert"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Beerbaum, Philipp"],["dc.contributor.author","Kelle, Sebastian"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2019-07-09T11:50:08Z"],["dc.date.available","2019-07-09T11:50:08Z"],["dc.date.issued","2019"],["dc.description.abstract","BACKGROUND: Cardiovascular magnetic resonance feature tracking (CMR-FT) is increasingly used for myocardial deformation assessment including ventricular strain, showing prognostic value beyond established risk markers if used in experienced centres. Little is known about the impact of appropriate training on CMR-FT performance. Consequently, this study aimed to evaluate the impact of training on observer variance using different commercially available CMR-FT software. METHODS: Intra- and inter-observer reproducibility was assessed prior to and after dedicated one-hour observer training. Employed FT software included 3 different commercially available platforms (TomTec, Medis, Circle). Left (LV) and right (RV) ventricular global longitudinal as well as LV circumferential and radial strains (GLS, GCS and GRS) were studied in 12 heart failure patients and 12 healthy volunteers. RESULTS: Training improved intra- and inter-observer reproducibility. GCS and LV GLS showed the highest reproducibility before (ICC >0.86 and >0.81) and after training (ICC >0.91 and >0.92). RV GLS and GRS were more susceptible to tracking inaccuracies and reproducibility was lower. Inter-observer reproducibility was lower than intra-observer reproducibility prior to training with more pronounced improvements after training. Before training, LV strain reproducibility was lower in healthy volunteers as compared to patients with no differences after training. Whilst LV strain reproducibility was sufficient within individual software solutions inter-software comparisons revealed considerable software related variance. CONCLUSION: Observer experience is an important source of variance in CMR-FT derived strain assessment. Dedicated observer training significantly improves reproducibility with most profound benefits in states of high myocardial contractility and potential to facilitate widespread clinical implementation due to optimized robustness and diagnostic performance."],["dc.identifier.doi","10.1371/journal.pone.0210127"],["dc.identifier.pmid","30682045"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15866"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59708"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Cardiovascular magnetic resonance imaging feature tracking: Impact of training on observer performance and reproducibility"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC