Options
Gralle, Matthias
Loading...
Preferred name
Gralle, Matthias
Official Name
Gralle, Matthias
Alternative Name
Gralle, M.
Gralle, Mathias
Now showing 1 - 1 of 1
2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","505"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","513"],["dc.bibliographiccitation.volume","188"],["dc.contributor.author","Deeg, Sebastian"],["dc.contributor.author","Gralle, Mathias"],["dc.contributor.author","Sroka, Kamila"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Wouters, Fred Silvester"],["dc.contributor.author","Kermer, Pawel"],["dc.date.accessioned","2017-09-07T11:46:08Z"],["dc.date.available","2017-09-07T11:46:08Z"],["dc.date.issued","2010"],["dc.description.abstract","Mutations in the gene coding for DJ-1 protein lead to early-onset recessive forms of Parkinson's disease. It is believed that loss of DJ-1 function is causative for disease, although the function of DJ-1 still remains a matter of controversy. We show that DJ-1 is localized in the cytosol and is associated with membranes and organelles in the form of homodimers. The disease-related mutation L166P shifts its subcellular distribution to the nucleus and decreases its ability to dimerize, impairing cell survival. Using an intracellular foldase biosensor, we found that wild-type DJ-1 possesses chaperone activity, which is abolished by the L166P mutation. We observed that this aberrant phenotype can be reversed by the expression of the cochaperone BAG1 (Bcl-2-associated athanogene 1), restoring DJ-1 subcellular distribution, dimer formation, and chaperone activity and ameliorating cell survival."],["dc.identifier.doi","10.1083/jcb.200904103"],["dc.identifier.gro","3142963"],["dc.identifier.isi","000274723800009"],["dc.identifier.pmid","20156966"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6087"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/425"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft (DFG) [EXC171]"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0021-9525"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","BAG1 restores formation of functional DJ-1 L166P dimers and DJ-1 chaperone activity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS