Now showing 1 - 3 of 3
  • 2018Journal Article
    [["dc.bibliographiccitation.artnumber","290"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Neef, Jakob"],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Ohn, Tzu-Lun"],["dc.contributor.author","Frank, Thomas"],["dc.contributor.author","Jean, Philippe"],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Moser, Tobias"],["dc.date.accessioned","2018-04-23T11:48:23Z"],["dc.date.available","2018-04-23T11:48:23Z"],["dc.date.issued","2018"],["dc.description.abstract","Ca2+ influx triggers the release of synaptic vesicles at the presynaptic active zone (AZ). A quantitative characterization of presynaptic Ca2+ signaling is critical for understanding synaptic transmission. However, this has remained challenging to establish at the required resolution. Here, we employ confocal and stimulated emission depletion (STED) microscopy to quantify the number (20–330) and arrangement (mostly linear 70 nm × 100–600 nm clusters) of Ca2+ channels at AZs of mouse cochlear inner hair cells (IHCs). Establishing STED Ca2+ imaging, we analyze presynaptic Ca2+ signals at the nanometer scale and find confined elongated Ca2+ domains at normal IHC AZs, whereas Ca2+ domains are spatially spread out at the AZs of bassoon-deficient IHCs. Performing 2D-STED fluorescence lifetime analysis, we arrive at estimates of the Ca2+ concentrations at stimulated IHC AZs of on average 25 µM. We propose that IHCs form bassoon-dependent presynaptic Ca2+-channel clusters of similar density but scalable length, thereby varying the number of Ca2+ channels amongst individual AZs."],["dc.identifier.doi","10.1038/s41467-017-02612-y"],["dc.identifier.gro","3142361"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15588"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13498"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","E8047"],["dc.bibliographiccitation.issue","34"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","E8056"],["dc.bibliographiccitation.volume","115"],["dc.contributor.author","Masch, Jennifer-Magdalena"],["dc.contributor.author","Steffens, Heinz"],["dc.contributor.author","Fischer, Joachim"],["dc.contributor.author","Engelhardt, Johann"],["dc.contributor.author","Hubrich, Jasmine"],["dc.contributor.author","Keller-Findeisen, Jan"],["dc.contributor.author","D'Este, Elisa"],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Grant, Seth G. N."],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Kamin, Dirk"],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-11-16T10:48:20Z"],["dc.date.accessioned","2021-10-27T13:21:10Z"],["dc.date.available","2018-11-16T10:48:20Z"],["dc.date.available","2021-10-27T13:21:10Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1073/pnas.1807104115"],["dc.identifier.pmid","30082388"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15631"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/91999"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/37"],["dc.language.iso","en"],["dc.notes.intern","Migrated from goescholar"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A07: Der Aufbau des synaptischen Cytoskeletts"],["dc.relation.orgunit","Universitätsmedizin Göttingen"],["dc.relation.workinggroup","RG D’Este"],["dc.relation.workinggroup","RG Hell"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","577"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Nature communications"],["dc.bibliographiccitation.lastpage","9"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Richardson, Douglas S."],["dc.contributor.author","Gregor, Carola"],["dc.contributor.author","Winter, Franziska R."],["dc.contributor.author","Urban, Nicolai T."],["dc.contributor.author","Sahl, Steffen J."],["dc.contributor.author","Willig, Katrin I."],["dc.contributor.author","Hell, Stefan W."],["dc.date.accessioned","2018-01-17T13:31:10Z"],["dc.date.available","2018-01-17T13:31:10Z"],["dc.date.issued","2017"],["dc.description.abstract","Fluorescence-based biosensors have become essential tools for modern biology, allowing real-time monitoring of biological processes within living cells. Intracellular fluorescent pH probes comprise one of the most widely used families of biosensors in microscopy. One key application of pH probes has been to monitor the acidification of vesicles during endocytosis, an essential function that aids in cargo sorting and degradation. Prior to the development of super-resolution fluorescence microscopy (nanoscopy), investigation of endosomal dynamics in live cells remained difficult as these structures lie at or below the ~250 nm diffraction limit of light microscopy. Therefore, to aid in investigations of pH dynamics during endocytosis at the nanoscale, we have specifically designed a family of ratiometric endosomal pH probes for use in live-cell STED nanoscopy.Ratiometric fluorescent pH probes are useful tools to monitor acidification of vesicles during endocytosis, but the size of vesicles is below the diffraction limit. Here the authors develop a family of ratiometric pH sensors for use in STED super-resolution microscopy, and optimize their delivery to endosomes."],["dc.identifier.doi","10.1038/s41467-017-00606-4"],["dc.identifier.pmid","28924139"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16496"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11717"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","SRpHi ratiometric pH biosensors for super-resolution microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC