Now showing 1 - 10 of 13
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Biological Invasions"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Schaefer, Ina"],["dc.contributor.author","Jochum, Malte"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Eisenhauer, Nico"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2021-06-01T09:41:03Z"],["dc.date.available","2021-06-01T09:41:03Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Deforestation, plantation expansion and other human activities in tropical ecosystems are often associated with biological invasions. These processes have been studied for above-ground organisms, but associated changes below the ground have received little attention. We surveyed rainforest and plantation systems in Jambi province, Sumatra, Indonesia, to investigate effects of land-use change on the diversity and abundance of earthworms—a major group of soil-ecosystem engineers that often is associated with human activities. Density and biomass of earthworms increased 4—30-fold in oil palm and rubber monoculture plantations compared to rainforest. Despite much higher abundance, earthworm communities in plantations were less diverse and dominated by the peregrine morphospecies Pontoscolex corethrurus, often recorded as invasive. Considering the high deforestation rate in Indonesia, invasive earthworms are expected to dominate soil communities across the region in the near future, in lieu of native soil biodiversity. Ecologically-friendly management approaches, increasing structural habitat complexity and plant diversity, may foster beneficial effects of invasive earthworms on plant growth while mitigating negative effects on below-ground biodiversity and the functioning of the native soil animal community."],["dc.identifier.doi","10.1007/s10530-021-02539-y"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84805"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B01: Structure, stability and functioning of macro-invertebrate communities in rainforest transformation systems in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B02: Impact of rainforest transformation on phylogenetic and functional diversity of soil prokaryotic communities in Sumatra (Indonesia)"],["dc.relation.eissn","1573-1464"],["dc.relation.issn","1387-3547"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Oil palm and rubber expansion facilitates earthworm invasion in Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","e02957"],["dc.bibliographiccitation.journal","Ecology"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Dupérré, Nadine"],["dc.contributor.author","Jochum, Malte"],["dc.contributor.author","Dreczko, Kerstin"],["dc.contributor.author","Klarner, Bernhard"],["dc.contributor.author","Barnes, Andrew D."],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Rembold, Katja"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Brose, Ulrich"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Harms, Danilo"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2020-01-29T10:54:30Z"],["dc.date.available","2020-01-29T10:54:30Z"],["dc.date.issued","2019"],["dc.description.abstract","Deforestation and land-use change in tropical regions result in habitat loss and extinction of species that are unable to adapt to the conditions in agricultural landscapes. If the associated loss of functional diversity is not compensated by species colonizing the converted habitats, extinctions might be followed by a reduction or loss of ecosystem functions including biological control. To date, little is known on how land-use change in the tropics alters the functional diversity of invertebrate predators and which key environmental factors may mitigate the decline in functional diversity and predation in litter and soil communities. We applied litter sieving and heat extraction to study ground spider communities and assessed structural characteristics of vegetation and parameters of litter in rainforest and agricultural land-use systems (jungle rubber, rubber and oil palm monocultures) in a Southeast Asian hotspot of rainforest conversion: Sumatra, Indonesia. We found that (1) spider density, species richness, functional diversity and community predation (energy flux to spiders) were reduced by 57-98% from rainforest to oil palm monoculture; (2) jungle rubber and rubber monoculture sustained relatively high diversity and predation in ground spiders, but small cryptic spider species strongly declined; (3) high species turnover compensated losses of some functional trait combinations, but did not compensate for the overall loss of functional diversity and predation per unit area; (4) spider diversity was related to habitat structure such as amount of litter, understory density and understory height, while spider predation was better explained by plant diversity. Management practices that increase habitat structural complexity and plant diversity such as mulching, reduced weeding, and intercropping monocultures with other plants may contribute to maintaining functional diversity of and predation services provided by ground invertebrate communities in plantations."],["dc.identifier.doi","10.1002/ecy.2957"],["dc.identifier.pmid","31840252"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62879"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B01: Structure, stability and functioning of macro-invertebrate communities in rainforest transformation systems in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.eissn","1939-9170"],["dc.relation.issn","0012-9658"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Functional losses in ground spider communities due to habitat-structure degradation under tropical land-use change"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Frontiers in Ecology and Evolution"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Krause, Alena"],["dc.contributor.author","Sandmann, Dorothee"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Ermilov, Sergey"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Haneda, Noor Farikhah"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Maraun, Mark"],["dc.date.accessioned","2021-07-05T14:57:52Z"],["dc.date.available","2021-07-05T14:57:52Z"],["dc.date.issued","2021"],["dc.description.abstract","Land-use change is threatening biodiversity worldwide and is predicted to increase in the next decades, especially in tropical regions. Most studies focused on the response of single or few species to land-use change, only few investigated the response of entire communities. In particular the response of belowground communities to changes in land use received little attention. Oribatid mites (Oribatida, Acari) are among the most abundant soil animals, involved in decomposition processes and nutrient cycling. Oribatid mite species span a wide range of trophic niches and are known to sensitively respond to changes in land use. Here, we investigated shifts in the community-level trophic niche of oribatid mites with the conversion of rainforest into rubber and oil palm plantations. Due to a wider range of resources in more natural ecosystems, we expected the community-level trophic niche to shrink with conversion of rainforest into plantations. As the conversion of rainforest into plantations is associated with reduced availability of litter resources, we expected the average trophic level (indicated by the 15 N/ 14 N ratio) to be higher and basal resources (indicated by the 13 C/ 12 C ratio) to shift toward living plant material in rubber and oil palm plantations. Our analysis showed that community-level trophic niches in rainforest and rubber agroforest (“jungle rubber”) were separated from those in monoculture plantation systems, indicating a trophic niche shift with land-use intensification. As hypothesized, oribatid mites shifted their diet toward predation and/or scavenging and toward the plant-based energy channel with transformation of rainforest into plantations. Exceptionally low minimum 13 C/ 12 C ratios in rubber plantations suggest that certain oribatid mite species in this land-use system use resources not available in the other studied ecosystems. We detected high isotopic uniqueness in oil palm plantations suggesting a low trophic redundancy and thus high vulnerability of trophic functioning in this system in comparison to rainforest. Overall, the results suggest that the conversion of rainforest into plantations is associated with pronounced shifts in community-level trophic niches of mesofauna detritivores with potential major consequences for the functioning of the decomposer system."],["dc.description.abstract","Land-use change is threatening biodiversity worldwide and is predicted to increase in the next decades, especially in tropical regions. Most studies focused on the response of single or few species to land-use change, only few investigated the response of entire communities. In particular the response of belowground communities to changes in land use received little attention. Oribatid mites (Oribatida, Acari) are among the most abundant soil animals, involved in decomposition processes and nutrient cycling. Oribatid mite species span a wide range of trophic niches and are known to sensitively respond to changes in land use. Here, we investigated shifts in the community-level trophic niche of oribatid mites with the conversion of rainforest into rubber and oil palm plantations. Due to a wider range of resources in more natural ecosystems, we expected the community-level trophic niche to shrink with conversion of rainforest into plantations. As the conversion of rainforest into plantations is associated with reduced availability of litter resources, we expected the average trophic level (indicated by the 15 N/ 14 N ratio) to be higher and basal resources (indicated by the 13 C/ 12 C ratio) to shift toward living plant material in rubber and oil palm plantations. Our analysis showed that community-level trophic niches in rainforest and rubber agroforest (“jungle rubber”) were separated from those in monoculture plantation systems, indicating a trophic niche shift with land-use intensification. As hypothesized, oribatid mites shifted their diet toward predation and/or scavenging and toward the plant-based energy channel with transformation of rainforest into plantations. Exceptionally low minimum 13 C/ 12 C ratios in rubber plantations suggest that certain oribatid mite species in this land-use system use resources not available in the other studied ecosystems. We detected high isotopic uniqueness in oil palm plantations suggesting a low trophic redundancy and thus high vulnerability of trophic functioning in this system in comparison to rainforest. Overall, the results suggest that the conversion of rainforest into plantations is associated with pronounced shifts in community-level trophic niches of mesofauna detritivores with potential major consequences for the functioning of the decomposer system."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.3389/fevo.2021.592149"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87762"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-441"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation","SFB 990 | B | B13: Impact of management intensity and tree enrichment of oil palm plantations on below- and aboveground invertebrates in Sumatra (Indonesia)"],["dc.relation.eissn","2296-701X"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.relation.orgunit","Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Variation in Community-Level Trophic Niches of Soil Microarthropods With Conversion of Tropical Rainforest Into Plantation Systems as Indicated by Stable Isotopes (15N, 13C)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e10971"],["dc.bibliographiccitation.journal","PeerJ"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Susanti, Winda Ika"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Potapov, Anton"],["dc.date.accessioned","2021-04-12T09:59:47Z"],["dc.date.available","2021-04-12T09:59:47Z"],["dc.date.issued","2021"],["dc.description.abstract","Intensively managed monoculture plantations are increasingly replacing natural forests across the tropics resulting in changes in ecological niches of species and communities, and in ecosystem functioning. Collembola are among the most abundant arthropods inhabiting the belowground system sensitively responding to changes in vegetation and soil conditions. However, most studies on the response of Collembola to land-use change were conducted in temperate ecosystems and focused on shifts in community composition or morphological traits, while parameters more closely linked to ecosystem functioning, such as trophic niches, received little attention. Here, we used stable isotope analysis (13C and 15N) to investigate changes in the trophic structure and use of food resources by Collembola in Jambi province (Sumatra, Indonesia), a region that experienced strong deforestation in the last decades. Isotopic values of Collembola from 32 sites representing four land-use systems were analyzed (rainforest, rubber agroforest, rubber (Hevea brasiliansis) and oil palm (Elaeis guineensis) monoculture plantations). Across Collembola species Δ13C values were highest in rainforest suggesting more pronounced processing of litter resources by microorganisms and consumption of these microorganisms by Collembola in this system. Lower Δ13C values, but high Δ13C variation in Collembola in oil palm plantations indicated that Collembola shifted towards herbivory and used more variable resources in this system. Small range in Δ15N values in Collembola species in monoculture plantations in comparison to rainforest indicated that conversion of rainforest into plantations is associated with simplification in the trophic structure of Collembola communities. This was further confirmed by generally lower isotopic niche differentiation among species in plantations. Across the studied ecosystems, atmobiotic species (Symphypleona and Paronellidae) occupied the lowest, whereas euedaphic Collembola species occupied the highest trophic position, resembling patterns in temperate forests. Some species of Paronellidae in rainforest and jungle rubber had Δ15N values below those of leaf litter suggesting algivory (Salina sp.1, Callyntrura sp.1 and Lepidonella sp.1), while a dominant species, Pseudosinella sp.1, had the highest Δ15N values in most of the land-use systems suggesting that this species at least in part lives as predator or scavenger. Overall, the results suggest that rainforest conversion into plantation systems is associated with marked shifts in the structure of trophic niches in soil and litter Collembola with potential consequences for ecosystem functioning and food-web stability."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.7717/peerj.10971"],["dc.identifier.pmid","33717699"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80658"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.issn","2167-8359"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.subject.gro","sfb990_abs"],["dc.title","Trophic niche differentiation and utilisation of food resources in Collembola is altered by rainforest conversion to plantation systems"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","95"],["dc.bibliographiccitation.issue","820"],["dc.bibliographiccitation.journal","ZooKeys"],["dc.bibliographiccitation.lastpage","118"],["dc.contributor.author","Fardiansah, Riko"],["dc.contributor.author","Dupérré, Nadine"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Potapov, Anton"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Harms, Danilo"],["dc.date.accessioned","2019-07-09T11:49:58Z"],["dc.date.available","2019-07-09T11:49:58Z"],["dc.date.issued","2019"],["dc.description.abstract","Four new species of armoured spiders from Sumatra, Indonesia are described. Three species are described in the genus Ablemma Roewer, 1963 and one species in the genus Brignoliella Shear, 1978; Ablemmaandrianasp. n. (male), Ablemmacontritasp. n. (male and female), Ablemmakelincisp. n. (male) and Brignoliellapatmaesp. n. (male and female). The female of Ablemmasingalang Lehtinen, 1981 is described here for the first time. The first record of Brignoliella for Sumatra is also presented."],["dc.identifier.doi","10.3897/zookeys.820.29363"],["dc.identifier.pmid","30733636"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15824"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59669"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.issn","1313-2989"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.subject.gro","Journal Article"],["dc.subject.gro","ABS"],["dc.subject.gro","sfb990_journalarticles"],["dc.subject.gro","sfb990_abs"],["dc.title","Description of four new species of armoured spiders (Araneae, Tetrablemmidae) from Sumatra, Indonesia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1186"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Grass, Ingo"],["dc.contributor.author","Kubitza, Christoph"],["dc.contributor.author","Krishna, Vijesh V."],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Mußhoff, Oliver"],["dc.contributor.author","Pütz, Peter"],["dc.contributor.author","Drescher, Jochen"],["dc.contributor.author","Rembold, Katja"],["dc.contributor.author","Ariyanti, Eka Sulpin"],["dc.contributor.author","Barnes, Andrew D."],["dc.contributor.author","Brinkmann, Nicole"],["dc.contributor.author","Brose, Ulrich"],["dc.contributor.author","Brümmer, Bernhard"],["dc.contributor.author","Buchori, Damayanti"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Darras, Kevin F. A."],["dc.contributor.author","Faust, Heiko"],["dc.contributor.author","Fehrmann, Lutz"],["dc.contributor.author","Hein, Jonas"],["dc.contributor.author","Hennings, Nina"],["dc.contributor.author","Hidayat, Purnama"],["dc.contributor.author","Hölscher, Dirk"],["dc.contributor.author","Jochum, Malte"],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Kotowska, Martyna M."],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Lobite, Neil Jun S."],["dc.contributor.author","Panjaitan, Rawati"],["dc.contributor.author","Polle, Andrea"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Purnama, Edwine"],["dc.contributor.author","Qaim, Matin"],["dc.contributor.author","Röll, Alexander"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Schneider, Dominik"],["dc.contributor.author","Tjoa, Aiyen"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Veldkamp, Edzo"],["dc.contributor.author","Wollni, Meike"],["dc.date.accessioned","2021-04-12T09:49:43Z"],["dc.date.available","2021-04-12T09:49:43Z"],["dc.date.issued","2020"],["dc.description.abstract","Land-use transitions can enhance the livelihoods of smallholder farmers but potential economic-ecological trade-offs remain poorly understood. Here, we present an interdisciplinary study of the environmental, social and economic consequences of land-use transitions in a tropical smallholder landscape on Sumatra, Indonesia. We find widespread biodiversity-profit trade-offs resulting from land-use transitions from forest and agroforestry systems to rubber and oil palm monocultures, for 26,894 aboveground and belowground species and whole-ecosystem multidiversity. Despite variation between ecosystem functions, profit gains come at the expense of ecosystem multifunctionality, indicating far-reaching ecosystem deterioration. We identify landscape compositions that can mitigate trade-offs under optimal land-use allocation but also show that intensive monocultures always lead to higher profits. These findings suggest that, to reduce losses in biodiversity and ecosystem functioning, changes in economic incentive structures through well-designed policies are urgently needed."],["dc.identifier.doi","10.1038/s41467-020-15013-5"],["dc.identifier.pmid","32132531"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80644"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A02: Wassernutzungseigenschaften von Bäumen und Palmen in Regenwald-Transformationssystemen Zusammenfassung"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation","SFB 990 | A | A04: Carbon stock, turnover and functions in heavily weathered soils under lowland rainforest transformation systems"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation","SFB 990 | B | B01: Structure, stability and functioning of macro-invertebrate communities in rainforest transformation systems in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B02: Impact of rainforest transformation on phylogenetic and functional diversity of soil prokaryotic communities in Sumatra (Indonesia)"],["dc.relation","SFB 990 | B | B04: Pflanzenproduktivität und Ressourcenaufteilung im Wurzelraum entlang von Gradienten tropischer Landnutzungsintensität und Baumartenvielfalt"],["dc.relation","SFB 990 | B | B05: Land use patterns in Jambi - quantification of structure, heterogeneity and changes of vegetation and land use as a basis for the explanation of ecological and socioeconomic functions"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B07: Functional diversity of mycorrhizal fungi along a tropical land-use gradient"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation","SFB 990 | B | B09: Oberirdische Biodiversitätsmuster und Prozesse in Regenwaldtransformations-Landschaften"],["dc.relation","SFB 990 | C | C01: Produktivität, Marktzugang und internationale Anbindung von kleinbäuerlicher Kautschuk- und Palmölerzeugung in der Provinz Jambi"],["dc.relation","SFB 990 | C | C02: Soziale Transformationsprozesse und nachhaltige Ressourcennutzung im ländlichen Jambi"],["dc.relation","SFB 990 | C | C06: Zum Verständnis des Zertifizierungs- und Wiederanpflanzungsverhaltens indonesischer Kleinbauern"],["dc.relation","SFB 990 | C | C07: Einflussfaktoren von Landnutzungswandel und sozioökonomische Auswirkungen für ländliche Haushalte"],["dc.relation","SFB 990 | C | C08: Design effektiver Politikinstrumente zur Förderung nachhaltiger Landnutzung"],["dc.relation","SFB 990 | Z | Z02: Central Scientific Support Unit"],["dc.relation","SFB 990 | INF: Forschungsdatenmanagement und integrative statistische Datenanalyse"],["dc.relation.issn","2041-1723"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.relation.orgunit","Department für Agrarökonomie und Rurale Entwicklung"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.rights","CC BY 4.0"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Trade-offs between multifunctionality and profit in tropical smallholder landscapes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Ecological Applications"],["dc.contributor.author","Pashkevich, Michael D."],["dc.contributor.author","Luke, Sarah H."],["dc.contributor.author","Aryawan, Anak Agung Ketut"],["dc.contributor.author","Waters, Helen S."],["dc.contributor.author","Caliman, Jean‐Pierre"],["dc.contributor.author","Dupérré, Nadine"],["dc.contributor.author","Naim, Mohammad"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Turner, Edgar C."],["dc.date.accessioned","2022-04-01T10:02:12Z"],["dc.date.available","2022-04-01T10:02:12Z"],["dc.date.issued","2022"],["dc.description.abstract","Expansion of oil palm has caused widespread declines in biodiversity and changes in ecosystem functioning across the tropics. A major driver of these changes is loss of habitat heterogeneity as forests are converted into oil palm plantations. Therefore, one strategy to help support biodiversity and functioning in oil palm is to increase habitat heterogeneity, for instance, by retaining forested buffers around rivers when new plantations are established, or maintaining buffers made of mature oil palms (“mature palm buffers”) when old plantations are replanted. While forested buffers are known to benefit oil palm systems, the impacts of mature palm buffers are less certain. In this study, we assessed the benefits of mature palm buffers, which were being passively restored (in this case, meaning that buffers were treated with no herbicides, pesticides, or fertilizers) by sampling environmental conditions and arthropods within buffers and in surrounding non-buffer areas (i.e., areas that were 25 and 125 m from buffers, and receiving normal business-as-usual management) across an 8-year chronosequence in industrial oil palm plantations (Sumatra, Indonesia). We ask (1) Do environmental conditions and biodiversity differ between buffer and non-buffer areas? (2) Do buffers affect environmental conditions and biodiversity in adjacent non-buffer areas (i.e., areas that were 25 m from buffers)? (3) Do buffers become more environmentally complex and biodiverse over time? We found that buffers can have environmental conditions (canopy openness, variation in openness, vegetation height, ground cover, and soil temperature) and levels of arthropod biodiversity (total arthropod abundance and spider abundance in the understory and spider species-level community composition in all microhabitats) that are different from those in non-buffer areas, but that these differences are inconsistent across the oil palm commercial life cycle. We also found that buffers might contribute to small increases in vegetation height and changes in ground cover in adjacent non-buffer areas, but do not increase levels of arthropod biodiversity in these areas. Finally, we found that canopy openness, variation in openness, and ground cover, but no aspects of arthropod biodiversity, change within buffers over time. Collectively, our findings indicate that mature palm buffers that are being passively restored can have greater environmental complexity and higher levels of arthropod biodiversity than non-buffer areas, particularly in comparison to recently replanted oil palm, but these benefits are not consistent across the crop commercial life cycle. If the goal of maintaining riparian buffers is to consistently increase habitat heterogeneity and improve biodiversity, an alternative to mature palm buffers or a move toward more active restoration of these areas is, therefore, probably required."],["dc.identifier.doi","10.1002/eap.2552"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/105846"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-530"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.eissn","1939-5582"],["dc.relation.issn","1051-0761"],["dc.rights","CC BY 4.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Riparian buffers made of mature oil palms have inconsistent impacts on oil palm ecosystems"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.journal","Frontiers in Forests and Global Change"],["dc.bibliographiccitation.volume","2"],["dc.contributor.affiliation","Darras, Kevin F. A.; 1Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Corre, Marife D.; 2Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Formaglio, Greta; 2Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Tjoa, Aiyen; 3Agriculture Faculty, Tadulako University, Palu, Indonesia"],["dc.contributor.affiliation","Potapov, Anton; 4Department of Animal Ecology, J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Brambach, Fabian; 6Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Sibhatu, Kibrom T.; 7Department of Agricultural Economics and Rural Development, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Grass, Ingo; 1Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Rubiano, Andres Angulo; 1Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Buchori, Damayanti; 9Department of Plant Protection, IPB University, Bogor, Indonesia"],["dc.contributor.affiliation","Drescher, Jochen; 4Department of Animal Ecology, J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Fardiansah, Riko; 10Collaborative Research Centre 990, University of Jambi, Jambi, Indonesia"],["dc.contributor.affiliation","Hölscher, Dirk; 11Tropical Silviculture and Forest Ecology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Irawan, Bambang; 12Forestry Faculty, University of Jambi, Jambi, Indonesia"],["dc.contributor.affiliation","Kneib, Thomas; 13Chair of Statistics, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Krashevska, Valentyna; 4Department of Animal Ecology, J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Krause, Alena; 4Department of Animal Ecology, J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Kreft, Holger; 6Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Li, Kevin; 1Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Maraun, Mark; 4Department of Animal Ecology, J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Polle, Andrea; 14Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Ryadin, Aisjah R.; 14Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Rembold, Katja; 6Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Stiegler, Christian; 18Bioclimatology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Scheu, Stefan; 4Department of Animal Ecology, J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Tarigan, Suria; 19Department of Soil Sciences and Land Resources Management, IPB University, Bogor, Indonesia"],["dc.contributor.affiliation","Valdés-Uribe, Alejandra; 11Tropical Silviculture and Forest Ecology, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Yadi, Supri; 9Department of Plant Protection, IPB University, Bogor, Indonesia"],["dc.contributor.affiliation","Tscharntke, Teja; 1Agroecology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany"],["dc.contributor.affiliation","Veldkamp, Edzo; 2Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany"],["dc.contributor.author","Darras, Kevin F. A."],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Formaglio, Greta"],["dc.contributor.author","Tjoa, Aiyen"],["dc.contributor.author","Potapov, Anton"],["dc.contributor.author","Brambach, Fabian"],["dc.contributor.author","Sibhatu, Kibrom T."],["dc.contributor.author","Grass, Ingo"],["dc.contributor.author","Rubiano, Andres Angulo"],["dc.contributor.author","Buchori, Damayanti"],["dc.contributor.author","Drescher, Jochen"],["dc.contributor.author","Fardiansah, Riko"],["dc.contributor.author","Hölscher, Dirk"],["dc.contributor.author","Irawan, Bambang"],["dc.contributor.author","Kneib, Thomas"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Krause, Alena"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Li, Kevin"],["dc.contributor.author","Maraun, Mark"],["dc.contributor.author","Polle, Andrea"],["dc.contributor.author","Ryadin, Aisjah R."],["dc.contributor.author","Rembold, Katja"],["dc.contributor.author","Stiegler, Christian"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Tarigan, Suria"],["dc.contributor.author","Valdés-Uribe, Alejandra"],["dc.contributor.author","Yadi, Supri"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Veldkamp, Edzo"],["dc.date.accessioned","2019-12-17T15:35:22Z"],["dc.date.available","2019-12-17T15:35:22Z"],["dc.date.issued","2019"],["dc.date.updated","2022-09-06T08:10:07Z"],["dc.description.abstract","Oil palm plantations are intensively managed agricultural systems that increasingly dominate certain tropical regions. Oil palm monocultures have been criticized because of their reduced biodiversity compared to the forests they historically replaced, and because of their negative impact on soils, water, and climate. We experimentally test whether less intensive management schemes may enhance biodiversity and lessen detrimental effects on the environment while maintaining high yields. We compare reduced vs. conventional fertilization, as well as mechanical vs. chemical weed control (with herbicides) in a long-term, full-factorial, multidisciplinary experiment. We conducted the experiment in an oil palm company estate in Sumatra, Indonesia, and report the results of the first 2 years. We measured soil nutrients and functions, surveyed above- and below-ground organisms, tracked oil palm condition and productivity, and calculated plantation gross margins. Plants, aboveground arthropods, and belowground animals were positively affected by mechanical vs. chemical weed control, but we could not detect effects on birds and bats. There were no detectable negative effects of reduced fertilization or mechanical weeding on oil palm yields, fine roots, or leaf area index. Also, we could not detect detrimental effects of the reduced fertilization and mechanical weeding on soil nutrients and functions (mineral nitrogen, bulk density, and litter decomposition), but water infiltration and base saturation tended to be higher under mechanical weeding, while soil moisture, and microbial biomass varied with treatment. Economic performance, measured as gross margins, was higher under reduced fertilization. There might be a delayed response of oil palm to the different management schemes applied, so results of future years may confirm whether this is a sustainable management strategy. Nevertheless, the initial effects of the experiment are encouraging to consider less intensive management practices as economically and ecologically viable options for oil palm plantations."],["dc.identifier.doi","10.3389/ffgc.2019.00065"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/62760"],["dc.language.iso","en"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A02: Wassernutzungseigenschaften von Bäumen und Palmen in Regenwald-Transformationssystemen Zusammenfassung"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation","SFB 990 | A | A07: Räumlich-zeitliche Skalierung des Einflusses von Landnutzung und Klimawandel auf Landnutzungssysteme in Indonesien"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B07: Functional diversity of mycorrhizal fungi along a tropical land-use gradient"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation","SFB 990 | B | B09: Oberirdische Biodiversitätsmuster und Prozesse in Regenwaldtransformations-Landschaften"],["dc.relation","SFB 990 | B | B13: Impact of management intensity and tree enrichment of oil palm plantations on below- and aboveground invertebrates in Sumatra (Indonesia)"],["dc.relation","SFB 990 | C | C07: Einflussfaktoren von Landnutzungswandel und sozioökonomische Auswirkungen für ländliche Haushalte"],["dc.relation.eissn","2624-893X"],["dc.relation.issn","2624-893X"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.rights","CC BY 4.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Reducing Fertilizer and Avoiding Herbicides in Oil Palm Plantations - Ecological and Economic Valuations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","181"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Frontiers in Ecology and the Environment"],["dc.bibliographiccitation.lastpage","187"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Potapov, Anton M."],["dc.contributor.author","Bonnier, Roman"],["dc.contributor.author","Sandmann, Dorothee"],["dc.contributor.author","Wang, Simin"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Krashevska, Valentyna"],["dc.date.accessioned","2021-04-14T08:27:15Z"],["dc.date.available","2021-04-14T08:27:15Z"],["dc.date.issued","2020"],["dc.description.abstract","Oil palm plantations are expanding rapidly throughout Southeast Asia due to increasing global food demand, thereby putting greater pressure on local ecosystems. These plantations usually replace rainforests, resulting in major losses of soil structure and fertility, and belowground biodiversity. However, despite causing soil degradation, oil palms may provide a novel microhabitat for soil biota in suspended soil that accumulates in the axils of cut palm fronds attached to the trunks of these trees. We examined soil communities belowground and in frond axils in a 16‐year‐old oil palm plantation in Sumatra, Indonesia. Community metabolism of small arthropods, nematodes, and testate amoebae (protists) per gram of soil was much higher in axils (suspended soil) than in belowground soil, and accounted for approximately 28% of total soil fauna metabolism at the plantation scale (considering the top 5 cm of soil). Preserving these aboveground microhabitats of suspended soil as hotspots of biological activity during plantation management may therefore partly offset the detrimental impacts of oil palm plantations on soil‐borne processes and biodiversity."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.identifier.doi","10.1002/fee.2174"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82220"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation.eissn","1540-9309"],["dc.relation.issn","1540-9295"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited."],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Aboveground soil supports high levels of biological activity in oil palm plantations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","e9020"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Ecology and Evolution"],["dc.bibliographiccitation.volume","12"],["dc.contributor.affiliation","Stiegler, Christian; 2\r\nBioclimatology\r\nUniversity of Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","June, Tania; 3\r\nDepartment of Geophysics and Meteorology\r\nBogor Agricultural University (IPB)\r\nBogor Indonesia"],["dc.contributor.affiliation","Widyastuti, Rahayu; 4\r\nDepartment of Soil Sciences and Land Resources\r\nBogor Agricultural University (IPB)\r\nBogor Indonesia"],["dc.contributor.affiliation","Knohl, Alexander; 2\r\nBioclimatology\r\nUniversity of Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Scheu, Stefan; 1\r\nJ.F. Blumenbach Institute of Zoology and Anthropology\r\nUniversity of Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Potapov, Anton; 1\r\nJ.F. Blumenbach Institute of Zoology and Anthropology\r\nUniversity of Göttingen\r\nGöttingen Germany"],["dc.contributor.author","Krashevska, Valentyna"],["dc.contributor.author","Stiegler, Christian"],["dc.contributor.author","June, Tania"],["dc.contributor.author","Widyastuti, Rahayu"],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Potapov, Anton"],["dc.date.accessioned","2022-07-01T07:34:48Z"],["dc.date.available","2022-07-01T07:34:48Z"],["dc.date.issued","2022"],["dc.date.updated","2022-11-11T13:13:55Z"],["dc.description.abstract","Deforestation and agricultural expansion in the tropics affect local and regional climatic conditions, leading to synergistic negative impacts on land ecosystems. Climatic changes manifest in increased inter- and intraseasonal variations and frequency of extreme climatic events (i.e., droughts and floods), which have evident consequences for aboveground biodiversity. However, until today, there have been no studies on how land use affects seasonal variations below ground in tropical ecosystems, which may be more buffered against climatic variation. Here, we analyzed seasonal variations in soil parameters, basal respiration, microbial communities, and abundances of soil invertebrates along with microclimatic conditions in rainforest and monocultures of oil palm and rubber in Sumatra, Indonesia. About 75% (20 out of 26) of the measured litter and soil, microbial, and animal parameters varied with season, with seasonal changes in 50% of the parameters depending on land use. Land use affected seasonal variations in microbial indicators associated with carbon availability and cycling rate. The magnitude of seasonal variations in microbial parameters in the soil of monocultures was almost 40% higher than in the soil of rainforest. Measured parameters were associated with short-term climatic conditions (3-day period air humidity) in plantations, but not in rainforest, confirming a reduced soil buffering ability in plantations. Overall, our findings suggest that land use temporally shifts and increases the magnitude of seasonal variations of the belowground ecosystem compartment, with microbial communities responding most strongly. The increased seasonal variations in soil biota in plantations likely translate into more pronounced fluctuations in essential ecosystem functions such as nutrient cycling and carbon sequestration, and these ramifications ultimately may compromise the stability of tropical ecosystems in the long term. As the observed seasonal dynamics is likely to increase with both local and global climate change, these shifts need closer attention for the long-term sustainable management of plantation systems in the tropics."],["dc.description.abstract","Land use shifted seasonal changes in microbial, animal, and bulk soil parameters. The magnitude of soil microbial variation increased by 40% in monocultures. The soil system in monocultures is affected by short‐term microclimatic changes. Increased seasonal variation in soil functioning is an aspect of global change. \r\nimage"],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.doi","10.1002/ece3.9020"],["dc.identifier.pmid","35784088"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112018"],["dc.identifier.url","https://publications.goettingen-research-online.de/handle/2/112018"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-581"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation","SFB 990 | B | B08: Struktur und Funktion des Zersetzersystems in Transformationssystemen von Tiefland-Regenwäldern"],["dc.relation","SFB 990 | Z | Z02: Central Scientific Support Unit"],["dc.relation.eissn","2045-7758"],["dc.relation.issn","2045-7758"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","Land‐use change shifts and magnifies seasonal variations of the decomposer system in lowland tropical landscapes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC