Now showing 1 - 3 of 3
  • 2008Conference Abstract
    [["dc.bibliographiccitation.journal","Wiener klinische Wochenschrift"],["dc.bibliographiccitation.volume","120"],["dc.contributor.author","Novota, P."],["dc.contributor.author","Sviland, Lisbet"],["dc.contributor.author","Opitz, Lennart"],["dc.contributor.author","Hitt, Reiner"],["dc.contributor.author","Dickinson, Anne M."],["dc.contributor.author","Walter, L."],["dc.contributor.author","Dressel, Ralf"],["dc.date.accessioned","2018-11-07T11:12:51Z"],["dc.date.available","2018-11-07T11:12:51Z"],["dc.date.issued","2008"],["dc.format.extent","124"],["dc.identifier.isi","000259367100404"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/53754"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","Wien"],["dc.relation.issn","0043-5325"],["dc.title","Major histocompatibility complex (MHC) gene expression profiling of the graft versus host reaction in skin explant assays"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2009Journal Article
    [["dc.bibliographiccitation.artnumber","36"],["dc.bibliographiccitation.journal","Molecular Neurodegeneration"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Montag, Judith"],["dc.contributor.author","Hitt, Reiner"],["dc.contributor.author","Opitz, Lennart"],["dc.contributor.author","Schulz-Schaeffer, Walter J."],["dc.contributor.author","Hunsmann, Gerhard"],["dc.contributor.author","Motzkus, Dirk"],["dc.date.accessioned","2018-11-07T11:25:35Z"],["dc.date.available","2018-11-07T11:25:35Z"],["dc.date.issued","2009"],["dc.description.abstract","The aim of our study was to analyze the differential expression of miRNAs in the brains of BSE-infected cynomolgus macaques as a model for Creutzfeldt-Jakob disease (CJD). MicroRNAs (miRNAs) are small noncoding RNAs regulating gene expression by mRNA targeting. Among other functions they contribute to neuronal development and survival. Recently, the lack of miRNA processing has been shown to promote neurodegeneration and deregulation of several miRNAs has been reported to be associated with Scrapie in mice. Therefore, we hypothesized that miRNAs are also regulated in response to human prion disease. We have applied miRNA-microarrays to identify deregulated miRNA candidates in brains of BSE-infected macaques. Shock-frozen brain sections of six BSE-infected and five non-infected macaques were used to validate regulated miRNA candidates by two independent qRT-PCR-based methods. Our study revealed significant upregulation of hsa-miR-342-3p and hsa-miR-494 in the brains of BSE-infected macaques compared to non-infected animals. In a pilot study we could show that hsa-miR-342-3p was also upregulated in brain samples of human type 1 and type 2 sporadic CJD. With respect to the reported regulation of this miRNA in Scrapie-infected mice, we propose that upregulation of hsa-miR-342-3p may be a general phenomenon in late stage prion disease and might be used as a novel marker for animal and human TSEs."],["dc.identifier.doi","10.1186/1750-1326-4-36"],["dc.identifier.isi","000269952200001"],["dc.identifier.pmid","19712440"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/5783"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/56654"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1750-1326"],["dc.rights","CC BY 2.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.0"],["dc.title","Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2009Journal Article
    [["dc.bibliographiccitation.artnumber","e7541"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PLoS One"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Galli, Soledad"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Hitt, Reiner"],["dc.contributor.author","Hesse, Doerte"],["dc.contributor.author","Opitz, Lennart"],["dc.contributor.author","Plessmann, Uwe"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Poderoso, Juan Jose"],["dc.contributor.author","Jares-Erijman, Elizabeth A."],["dc.contributor.author","Jovin, Thomas M."],["dc.date.accessioned","2019-07-09T11:52:42Z"],["dc.date.available","2019-07-09T11:52:42Z"],["dc.date.issued","2009"],["dc.description.abstract","Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) are members of the MAPK family and participate in the transduction of stimuli in cellular responses. Their long-term actions are accomplished by promoting the expression of specific genes whereas faster responses are achieved by direct phosphorylation of downstream effectors located throughout the cell. In this study we determined that hERK1 translocates to the mitochondria of HeLa cells upon a proliferative stimulus. In the mitochondrial environment, hERK1 physically associates with (i) at least 5 mitochondrial proteins with functions related to transport (i.e. VDAC1), signalling, and metabolism; (ii) histones H2A and H4; and (iii) other cytosolic proteins. This work indicates for the first time the presence of diverse ERK-complexes in mitochondria and thus provides a new perspective for assessing the functions of ERK1 in the regulation of cellular signalling and trafficking in HeLa cells."],["dc.format.extent","18"],["dc.identifier.doi","10.1371/journal.pone.0007541"],["dc.identifier.fs","569017"],["dc.identifier.pmid","19847302"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/5824"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/60253"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","Public Library of Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 2.5"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.5"],["dc.subject.ddc","610"],["dc.subject.mesh","Amino Acid Sequence"],["dc.subject.mesh","Cell Proliferation"],["dc.subject.mesh","Gene Expression Profiling"],["dc.subject.mesh","Gene Expression Regulation, Enzymologic"],["dc.subject.mesh","Gene Expression Regulation, Neoplastic"],["dc.subject.mesh","Glutathione Transferase"],["dc.subject.mesh","Hela Cells"],["dc.subject.mesh","Humans"],["dc.subject.mesh","MAP Kinase Signaling System"],["dc.subject.mesh","Mitochondria"],["dc.subject.mesh","Mitogen-Activated Protein Kinase 3"],["dc.subject.mesh","Molecular Sequence Data"],["dc.subject.mesh","Proteomics"],["dc.subject.mesh","Sequence Homology, Amino Acid"],["dc.subject.mesh","Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization"],["dc.title","A new paradigm for MAPK: structural interactions of hERK1 with mitochondria in HeLa cells."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC