Now showing 1 - 3 of 3
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","160090"],["dc.bibliographiccitation.journal","Scientific Data"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Centeno, Tonatiuh Pena"],["dc.contributor.author","Shomroni, Orr"],["dc.contributor.author","Hennion, Magali"],["dc.contributor.author","Halder, Rashi"],["dc.contributor.author","Vidal, Ramon"],["dc.contributor.author","Rahman, Raza-Ur"],["dc.contributor.author","Bonn, Stefan"],["dc.date.accessioned","2017-09-07T11:52:23Z"],["dc.date.available","2017-09-07T11:52:23Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1038/sdata.2016.90"],["dc.identifier.gro","3144912"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14127"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2588"],["dc.notes.intern","Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","public"],["dc.relation.issn","2052-4463"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Genome-wide chromatin and gene expression profiling during memory formation and maintenance in adult mice"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","1300"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Genes & Development"],["dc.bibliographiccitation.lastpage","1312"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Nemajerova, Alice"],["dc.contributor.author","Kramer, Daniela"],["dc.contributor.author","Siller, Saul S."],["dc.contributor.author","Herr, Christian"],["dc.contributor.author","Shomroni, Orr"],["dc.contributor.author","Pena, Tonatiuh"],["dc.contributor.author","Suazo, Cristina Gallinas"],["dc.contributor.author","Glaser, Katharina"],["dc.contributor.author","Wildung, Merit"],["dc.contributor.author","Steffen, Henrik"],["dc.contributor.author","Sriraman, Anusha"],["dc.contributor.author","Oberle, Fabian"],["dc.contributor.author","Wienken, Magdalena"],["dc.contributor.author","Hennion, Magali"],["dc.contributor.author","Vidal, Ramon"],["dc.contributor.author","Royen, Bettina"],["dc.contributor.author","Alevra, Mihai"],["dc.contributor.author","Schild, Detlev"],["dc.contributor.author","Bals, Robert"],["dc.contributor.author","Doenitz, Juergen"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Bonn, Stefan"],["dc.contributor.author","Takemaru, Ken-Ichi"],["dc.contributor.author","Moll, Ute M."],["dc.contributor.author","Lize, Muriel"],["dc.date.accessioned","2018-11-07T10:13:24Z"],["dc.date.available","2018-11-07T10:13:24Z"],["dc.date.issued","2016"],["dc.description.abstract","Motile multiciliated cells (MCCs) have critical roles in respiratory health and disease and are essential for cleaning inhaled pollutants and pathogens from airways. Despite their significance for human disease, the transcriptional control that governs multiciliogenesis remains poorly understood. Here we identify TP73, a p53 homolog, as governing the program for airway multiciliogenesis. Mice with TP73 deficiency suffer from chronic respiratory tract infections due to profound defects in ciliogenesis and complete loss of mucociliary clearance. Organotypic airway cultures pinpoint TAp73 as necessary and sufficient for basal body docking, axonemal extension, and motility during the differentiation of MCC progenitors. Mechanistically, cross-species genomic analyses and complete ciliary rescue of knockout MCCs identify TAp73 as the conserved central transcriptional integrator of multiciliogenesis. TAp73 directly activates the key regulators FoxJ1, Rfx2, Rfx3, and miR34bc plus nearly 50 structural and functional ciliary genes, some of which are associated with human ciliopathies. Our results position TAp73 as a novel central regulator of MCC differentiation."],["dc.identifier.doi","10.1101/gad.279836.116"],["dc.identifier.isi","000378084000006"],["dc.identifier.pmid","27257214"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40428"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cold Spring Harbor Lab Press, Publications Dept"],["dc.relation.issn","1549-5477"],["dc.relation.issn","0890-9369"],["dc.title","TAp73 is a central transcriptional regulator of airway multiciliogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","102"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Neuroscience"],["dc.bibliographiccitation.lastpage","110"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Halder, Rashi"],["dc.contributor.author","Hennion, Magali"],["dc.contributor.author","Vidal, Ramon O."],["dc.contributor.author","Shomroni, Orr"],["dc.contributor.author","Rahman, Raza-Ur"],["dc.contributor.author","Rajput, Ashish"],["dc.contributor.author","Centeno, Tonatiuh Pena"],["dc.contributor.author","van Bebber, Frauke"],["dc.contributor.author","Capece, Vincenzo"],["dc.contributor.author","Garcia Vizcaino, Julio C."],["dc.contributor.author","Schuetz, Anna-Lena"],["dc.contributor.author","Burkhardt, Susanne"],["dc.contributor.author","Benito, Eva"],["dc.contributor.author","Navarro Sala, Magdalena"],["dc.contributor.author","Bahari Javan, Sanaz"],["dc.contributor.author","Haass, Christian"],["dc.contributor.author","Schmid, Bettina"],["dc.contributor.author","Fischer, André"],["dc.contributor.author","Bonn, Stefan"],["dc.date.accessioned","2018-05-30T15:01:05Z"],["dc.date.available","2018-05-30T15:01:05Z"],["dc.date.issued","2016"],["dc.description.abstract","The ability to form memories is a prerequisite for an organism's behavioral adaptation to environmental changes. At the molecular level, the acquisition and maintenance of memory requires changes in chromatin modifications. In an effort to unravel the epigenetic network underlying both short- and long-term memory, we examined chromatin modification changes in two distinct mouse brain regions, two cell types and three time points before and after contextual learning. We found that histone modifications predominantly changed during memory acquisition and correlated surprisingly little with changes in gene expression. Although long-lasting changes were almost exclusive to neurons, learning-related histone modification and DNA methylation changes also occurred in non-neuronal cell types, suggesting a functional role for non-neuronal cells in epigenetic learning. Finally, our data provide evidence for a molecular framework of memory acquisition and maintenance, wherein DNA methylation could alter the expression and splicing of genes involved in functional plasticity and synaptic wiring."],["dc.identifier.doi","10.1038/nn.4194"],["dc.identifier.pmid","26656643"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/14808"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1546-1726"],["dc.title","DNA methylation changes in plasticity genes accompany the formation and maintenance of memory"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC