Now showing 1 - 5 of 5
  • 2021Journal Article
    [["dc.bibliographiccitation.firstpage","2464"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Cell Metabolism"],["dc.bibliographiccitation.lastpage","2483.e18"],["dc.bibliographiccitation.volume","33"],["dc.contributor.author","Morgenstern, Marcel"],["dc.contributor.author","Peikert, Christian D."],["dc.contributor.author","Lübbert, Philipp"],["dc.contributor.author","Suppanz, Ida"],["dc.contributor.author","Klemm, Cinzia"],["dc.contributor.author","Alka, Oliver"],["dc.contributor.author","Steiert, Conny"],["dc.contributor.author","Naumenko, Nataliia"],["dc.contributor.author","Schendzielorz, Alexander"],["dc.contributor.author","Melchionda, Laura"],["dc.contributor.author","Warscheid, Bettina"],["dc.date.accessioned","2022-01-11T14:05:34Z"],["dc.date.available","2022-01-11T14:05:34Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.cmet.2021.11.001"],["dc.identifier.pii","S1550413121005295"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/97693"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-507"],["dc.relation.issn","1550-4131"],["dc.title","Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2007Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","651"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Cell Death and Differentiation"],["dc.bibliographiccitation.lastpage","661"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Meuer, K."],["dc.contributor.author","Suppanz, I. E."],["dc.contributor.author","Lingor, P."],["dc.contributor.author","Planchamp, V."],["dc.contributor.author","Göricke, B."],["dc.contributor.author","Fichtner, L."],["dc.contributor.author","Braus, G. H."],["dc.contributor.author","Dietz, G. P. H."],["dc.contributor.author","Jakobs, S."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Weishaupt, J. H."],["dc.date.accessioned","2017-09-07T11:49:50Z"],["dc.date.available","2017-09-07T11:49:50Z"],["dc.date.issued","2007"],["dc.description.abstract","Under physiological conditions, mitochondrial morphology dynamically shifts between a punctuate appearance and tubular networks. However, little is known about upstream signal transduction pathways that regulate mitochondrial morphology. We show that mitochondrial fission is a very early and kinetically invariant event during neuronal cell death, which causally contributes to cytochrome c release and neuronal apoptosis. Using a small molecule CDK5 inhibitor, as well as a dominant-negative CDK5 mutant and RNAi knockdown experiments, we identified CDK5 as an upstream signalling kinase that regulates mitochondrial fission during apoptosis of neurons. Vice versa, our study shows that mitochondrial fission is a modulator contributing to CDK5-mediated neurotoxicity. Thereby, we provide a link that allows integration of CDK5 into established neuronal apoptosis pathways."],["dc.identifier.doi","10.1038/sj.cdd.4402087"],["dc.identifier.gro","3143515"],["dc.identifier.isi","000245102900002"],["dc.identifier.pmid","17218957"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1038"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1350-9047"],["dc.title","Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","6"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of microscopy"],["dc.bibliographiccitation.lastpage","13"],["dc.bibliographiccitation.volume","240"],["dc.contributor.author","Wurm, C. A."],["dc.contributor.author","Suppanz, I. E."],["dc.contributor.author","Stoldt, S."],["dc.contributor.author","Jakobs, S."],["dc.date.accessioned","2017-09-07T11:45:18Z"],["dc.date.available","2017-09-07T11:45:18Z"],["dc.date.issued","2010"],["dc.description.abstract","P>Live cell imaging of protein distributions is an essential tool in modern cell biology. It relies on the functional labelling of a host protein with a fluorophore, which may either be a genetically fused fluorescent protein or an organic dye binding to the host protein. The biarsenical-tetracysteine system or 'FlAsH-labelling', is based on the high affinity interaction between a biarsenical probe and a small protein tag. This approach has been successfully used for live cell imaging in the budding yeast Saccharomyces cerevisiae. However, the established labelling protocols require a lengthy overnight incubation of the cells with the dye under tightly controlled growth conditions, which severely limits the use of this approach. In this study, we characterize an efficient method for introducing FlAsH-EDT(2) into live budding yeast cells using standard electroporation. The labelling time is reduced from more than 12 h to less than 1 h without compromising the labelling efficiency or cell viability. This approach may be used for cells in different growth phases or grown under different conditions. It may be further extended to other small high affinity probes, thus opening up new possibilities for labelling in budding yeast."],["dc.identifier.doi","10.1111/j.1365-2818.2010.03378.x"],["dc.identifier.gro","3142851"],["dc.identifier.isi","000281715400002"],["dc.identifier.pmid","21050208"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/300"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0022-2720"],["dc.title","Rapid FlAsH labelling in the budding yeast Saccharomyces cerevisiae"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2009Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","572"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","580"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Suppanz, Ida E."],["dc.contributor.author","Wurm, Christian A."],["dc.contributor.author","Wenzel, Dirk"],["dc.contributor.author","Jakobs, Stefan"],["dc.date.accessioned","2017-09-07T11:47:35Z"],["dc.date.available","2017-09-07T11:47:35Z"],["dc.date.issued","2009"],["dc.description.abstract","The m-AAA protease is a conserved hetero-oligomeric complex in the inner membrane of mitochondria. Recent evidence suggests a compartmentalization of the contiguous mitochondrial inner membrane into an inner boundary membrane (IBM) and a cristae membrane (CM). However, little is known about the functional differences of these subdomains. We have analyzed the localizations of the m-AAA protease and its substrate cytochrome c peroxidase (Ccp1) within yeast mitochondria using live cell fluorescence microscopy and quantitative immunoelectron microscopy. We find that the m-AAA protease is preferentially localized in the IBM. Likewise, the membrane-anchored precursor form of Ccp1 accumulates in the IBM of mitochondria lacking a functional m-AAA protease. Only upon proteolytic cleavage the mature form mCcp1 moves into the cristae space. These findings suggest that protein quality control and proteolytic activation exerted by the m-AAA protease take place preferentially in the IBM pointing to significant functional differences between the IBM and the CM."],["dc.identifier.doi","10.1091/mbc.E07-11-1112"],["dc.identifier.gro","3143175"],["dc.identifier.isi","000262469300001"],["dc.identifier.pmid","19019989"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/660"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Deutsche Forschungsgemeinschaft [JA 1129/3]"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1059-1524"],["dc.title","The m-AAA Protease Processes Cytochrome c Peroxidase Preferentially at the Inner Boundary Membrane of Mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020-03-23Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1119"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Current Biology"],["dc.bibliographiccitation.lastpage","1127.e5"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Cruz-Zaragoza, Luis Daniel"],["dc.contributor.author","Suppanz, Ida E."],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Montoya, Julio"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2020-04-29T13:50:08Z"],["dc.date.available","2020-04-29T13:50:08Z"],["dc.date.issued","2020-03-23"],["dc.description.abstract","In mitochondria, the carrier translocase (TIM22 complex) facilitates membrane insertion of multi-spanning proteins with internal targeting signals into the inner membrane [1-3]. Tom70, a subunit of TOM complex, represents the major receptor for these precursors [2, 4-6]. After transport across the outer membrane, the hydrophobic carriers engage with the small TIM protein complex composed of Tim9 and Tim10 for transport across the intermembrane space (IMS) toward the TIM22 complex [7-12]. Tim22 represents the pore-forming core unit of the complex [13, 14]. Only a small subset of TIM22 cargo molecules, containing four or six transmembrane spans, have been experimentally defined. Here, we used a tim22 temperature-conditional mutant to define the TIM22 substrate spectrum. Along with carrier-like cargo proteins, we identified subunits of the mitochondrial pyruvate carrier (MPC) as unconventional TIM22 cargos. MPC proteins represent substrates with atypical topology for this transport pathway. In agreement with this, a patient affected in TIM22 function displays reduced MPC levels. Our findings broaden the repertoire of carrier pathway substrates and challenge current concepts of TIM22-mediated transport processes."],["dc.identifier.doi","10.1016/j.cub.2020.01.024"],["dc.identifier.pmid","32142709"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64483"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/107"],["dc.language.iso","en"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation.eissn","1879-0445"],["dc.relation.issn","0960-9822"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Defining the Substrate Spectrum of the TIM22 Complex Identifies Pyruvate Carrier Subunits as Unconventional Cargos"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC