Now showing 1 - 10 of 41
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","1050"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Nature Neuroscience"],["dc.bibliographiccitation.lastpage","1059"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Quintes, Susanne"],["dc.contributor.author","Brinkmann, Bastian G"],["dc.contributor.author","Ebert, Madlen"],["dc.contributor.author","Fröb, Franziska"],["dc.contributor.author","Kungl, Theresa"],["dc.contributor.author","Arlt, Friederike A"],["dc.contributor.author","Tarabykin, Victor"],["dc.contributor.author","Huylebroeck, Danny"],["dc.contributor.author","Meijer, Dies"],["dc.contributor.author","Suter, Ueli"],["dc.contributor.author","Wegner, Michael"],["dc.contributor.author","Sereda, Michael W"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.date.accessioned","2020-12-10T18:09:31Z"],["dc.date.available","2020-12-10T18:09:31Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1038/nn.4321"],["dc.identifier.eissn","1546-1726"],["dc.identifier.issn","1097-6256"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73679"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Journal Article
    [["dc.bibliographiccitation.journal","Annals of Clinical and Translational Neurology"],["dc.contributor.author","Epplen, Dirk B."],["dc.contributor.author","Prukop, Thomas"],["dc.contributor.author","Nientiedt, Tobias"],["dc.contributor.author","Albrecht, Philipp"],["dc.contributor.author","Arlt, Friederike A."],["dc.contributor.author","Stassart, Ruth M."],["dc.contributor.author","Kassmann, Celia M."],["dc.contributor.author","Methner, Axel"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Werner, Hauke B."],["dc.contributor.author","Sereda, Michael W."],["dc.date.accessioned","2019-07-09T11:41:24Z"],["dc.date.available","2019-07-09T11:41:24Z"],["dc.date.issued","2015"],["dc.description.abstract","Objective: Pelizaeus–Merzbacher disease (PMD) is a progressive and lethal leukodystrophy caused by mutations affecting the proteolipid protein (PLP1) gene. The most common cause of PMD is a duplication of PLP1 and at present there is no curative therapy available. Methods: By using transgenic mice carrying additional copies of Plp1, we investigated whether curcumin diet ameliorates PMD symptoms. The diet of Plp1 transgenic mice was supplemented with curcumin for 10 consecutive weeks followed by phenotypical, histological and immunohistochemical analyses of the central nervous system. Plp1 transgenic and wild-type mice fed with normal chow served as controls. Results: Curcumin improved the motor phenotype performance of Plp1 transgenic mice by 50% toward wild-type level and preserved myelinated axons by 35% when compared to Plp1 transgenic controls. Furthermore, curcumin reduced astrocytosis, microgliosis and lymphocyte infiltration in Plp1 transgenic mice. Curcumin diet did not affect the pathologically increased Plp1 mRNA abundance. However, high glutathione levels indicating an oxidative misbalance in the white matter of Plp1 transgenic mice were restored by curcumin treatment. Interpretation: Curcumin may potentially serve as an antioxidant therapy of PMD caused by PLP1 gene duplication. ª"],["dc.identifier.doi","10.1002/acn3.219"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12013"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58419"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/201535/EU//NGIDD"],["dc.relation.euproject","Ngidd"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.title","Curcumin therapy in a Plp1 transgenic mouse model of Pelizaeus-Merzbacher disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","201"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Orphanet journal of rare diseases"],["dc.bibliographiccitation.lastpage","16"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Chumakov, Ilya"],["dc.contributor.author","Milet, Aude"],["dc.contributor.author","Cholet, Nathalie"],["dc.contributor.author","Primas, Gwenaël"],["dc.contributor.author","Boucard, Aurélie"],["dc.contributor.author","Pereira, Yannick"],["dc.contributor.author","Graudens, Esther"],["dc.contributor.author","Mandel, Jonas"],["dc.contributor.author","Laffaire, Julien"],["dc.contributor.author","Foucquier, Julie"],["dc.contributor.author","Glibert, Fabrice"],["dc.contributor.author","Bertrand, Viviane"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Sereda, Michael W."],["dc.contributor.author","Vial, Emmanuel"],["dc.contributor.author","Guedj, Mickaël"],["dc.contributor.author","Hajj, Rodolphe"],["dc.contributor.author","Nabirotchkin, Serguei"],["dc.contributor.author","Cohen, Daniel"],["dc.date.accessioned","2019-07-09T11:41:08Z"],["dc.date.available","2019-07-09T11:41:08Z"],["dc.date.issued","2014"],["dc.description.abstract","Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited sensory and motor peripheral neuropathy. It is caused by PMP22 overexpression which leads to defects of peripheral myelination, loss of long axons, and progressive impairment then disability. There is no treatment available despite observations that monotherapeutic interventions slow progression in rodent models. We thus hypothesized that a polytherapeutic approach using several drugs, previously approved for other diseases, could be beneficial by simultaneously targeting PMP22 and pathways important for myelination and axonal integrity. A combination of drugs for CMT1A polytherapy was chosen from a group of authorised drugs for unrelated diseases using a systems biology approach, followed by pharmacological safety considerations. Testing and proof of synergism of these drugs were performed in a co-culture model of DRG neurons and Schwann cells derived from a Pmp22 transgenic rat model of CMT1A. Their ability to lower Pmp22 mRNA in Schwann cells relative to house-keeping genes or to a second myelin transcript (Mpz) was assessed in a clonal cell line expressing these genes. Finally in vivo efficacy of the combination was tested in two models: CMT1A transgenic rats, and mice that recover from a nerve crush injury, a model to assess neuroprotection and regeneration. Combination of (RS)-baclofen, naltrexone hydrochloride and D-sorbitol, termed PXT3003, improved myelination in the Pmp22 transgenic co-culture cellular model, and moderately down-regulated Pmp22 mRNA expression in Schwannoma cells. In both in vitro systems, the combination of drugs was revealed to possess synergistic effects, which provided the rationale for in vivo clinical testing of rodent models. In Pmp22 transgenic CMT1A rats, PXT3003 down-regulated the Pmp22 to Mpz mRNA ratio, improved myelination of small fibres, increased nerve conduction and ameliorated the clinical phenotype. PXT3003 also improved axonal regeneration and remyelination in the murine nerve crush model. Based on these observations in preclinical models, a clinical trial of PTX3003 in CMT1A, a neglected orphan disease, is warranted. If the efficacy of PTX3003 is confirmed, rational polytherapy based on novel combinations of existing non-toxic drugs with pleiotropic effects may represent a promising approach for rapid drug development."],["dc.identifier.doi","10.1186/s13023-014-0201-x"],["dc.identifier.fs","606978"],["dc.identifier.pmid","25491744"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11689"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58355"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1750-1172"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Polytherapy with a combination of three repurposed drugs (PXT3003) down-regulates Pmp22 over-expression and improves myelination, axonal and functional parameters in models of CMT1A neuropathy."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2007Journal Article Erratum
    [["dc.bibliographiccitation.firstpage","282"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Annals of Neurology"],["dc.bibliographiccitation.lastpage","282"],["dc.bibliographiccitation.volume","61"],["dc.contributor.author","Meyer zu Horste, Gerd"],["dc.contributor.author","Prukop, Thomas"],["dc.contributor.author","Liebetanz, David"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Sereda, Michael W."],["dc.date.accessioned","2022-03-01T11:44:49Z"],["dc.date.available","2022-03-01T11:44:49Z"],["dc.date.issued","2007"],["dc.identifier.doi","10.1002/ana.21134"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103128"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1531-8249"],["dc.relation.iserratumof","/handle/2/52190"],["dc.relation.issn","0364-5134"],["dc.title","Correction"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","erratum_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Conference Abstract
    [["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of the Peripheral Nervous System"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Prukop, Thomas"],["dc.contributor.author","Milet, A."],["dc.contributor.author","Stenzel, J."],["dc.contributor.author","Cholet, N."],["dc.contributor.author","Nabirotchkin, S."],["dc.contributor.author","Hajj, R."],["dc.contributor.author","Nave, K-A"],["dc.contributor.author","Chumakov, I."],["dc.contributor.author","Cohen, Doron"],["dc.contributor.author","Sereda, Michael W."],["dc.date.accessioned","2018-11-07T09:56:13Z"],["dc.date.available","2018-11-07T09:56:13Z"],["dc.date.issued","2015"],["dc.format.extent","213"],["dc.identifier.isi","000360214600327"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36911"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.conference","Biennial Meeting of the Peripheral-Nerve-Society"],["dc.relation.eventlocation","Quebec, CANADA"],["dc.relation.issn","1529-8027"],["dc.relation.issn","1085-9489"],["dc.title","AN EXPERIMENTAL TRIAL OF AN EARLY ONSET TREATMENT WITH A COMBINATIONAL DRUG (PXT3003) CONSISTING OF BACLOFEN, NALTREXONE AND SORBITOL IN THE CMT1A RAT MODEL"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2009Journal Article
    [["dc.bibliographiccitation.firstpage","3465"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","Journal of Neuroscience Research"],["dc.bibliographiccitation.lastpage","3479"],["dc.bibliographiccitation.volume","87"],["dc.contributor.author","Schardt, Anke"],["dc.contributor.author","Brinkmann, Bastian G."],["dc.contributor.author","Mitkovski, Miso"],["dc.contributor.author","Sereda, Michael W."],["dc.contributor.author","Werner, Hauke B."],["dc.contributor.author","Nave, Klaus-Armin"],["dc.date.accessioned","2018-11-07T11:22:05Z"],["dc.date.available","2018-11-07T11:22:05Z"],["dc.date.issued","2009"],["dc.description.abstract","During myelin formation, vast amounts of specialized membrane proteins and lipids are trafficked toward the growing sheath in cell surface-directed transport vesicles. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment proteins (SNAPs) are important components of molecular complexes required for membrane fusion. We have analyzed the expression profile and molecular interactions of SNAP-29 in the nervous system. In addition to its known enrichment in neuronal synapses, SNAP-29 is abundant in oligodendrocytes during myelination and in noncompact myelin of the peripheral nervous system. By yeast two-hybrid screen and coimmunoprecipitation, we found that the GTPases Rab3A, Rab24, and septin 4 bind to the N-terminal domain of SNAP-29. The interaction with Rab24 or septin 4 was GTP independent. In contrast, interaction between SNAP-29 and Rab3A was GTP dependent, and colocalization was extensive both in synapses and in myelinating glia. In HEK293 cells, cytoplasmic SNAP-29 pools were redistributed upon coexpression with Rab3A, and surface-directed trafficking of myelin proteolipid protein was enhanced by overexpression of SNAP-29 and Rab3A. Interestingly, the abundance of SNAP-29 in sciatic nerves was increased during remyelination and in a rat model of Charcot-Marie-Tooth disease, two pathological situations with increased myelin membrane biogenesis. We suggest that Rab3A may regulate SNAP-29-mediated membrane fusion during myelination. (C) 2009 Wiley-Liss, Inc."],["dc.description.sponsorship","DFG [SFB 523]; BMBF (Leukonet)"],["dc.identifier.doi","10.1002/jnr.22005"],["dc.identifier.isi","000270843400023"],["dc.identifier.pmid","19170188"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/55921"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","0360-4012"],["dc.title","The SNARE Protein SNAP-29 Interacts With the GTPase Rab3A: Implications for Membrane Trafficking in Myelinating Glia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","1840"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Fledrich, Robert"],["dc.contributor.author","Akkermann, Dagmar"],["dc.contributor.author","Schütza, Vlad"],["dc.contributor.author","Abdelaal, Tamer A."],["dc.contributor.author","Hermes, Doris"],["dc.contributor.author","Schäffner, Erik"],["dc.contributor.author","Soto-Bernardini, M. Clara"],["dc.contributor.author","Götze, Tilmann"],["dc.contributor.author","Klink, Axel"],["dc.contributor.author","Kusch, Kathrin"],["dc.contributor.author","Krueger, Martin"],["dc.contributor.author","Kungl, Theresa"],["dc.contributor.author","Frydrychowicz, Clara"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Brück, Wolfgang"],["dc.contributor.author","Mueller, Wolf C."],["dc.contributor.author","Bechmann, Ingo"],["dc.contributor.author","Sereda, Michael W."],["dc.contributor.author","Schwab, Markus H."],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Stassart, Ruth M."],["dc.date.accessioned","2019-07-09T11:51:38Z"],["dc.date.available","2019-07-09T11:51:38Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1038/s41467-019-09886-4"],["dc.identifier.pmid","30992451"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16160"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59979"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Publisher Correction: NRG1 type I dependent autoparacrine stimulation of Schwann cells in onion bulbs of peripheral neuropathies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","533"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The American Journal of Human Genetics"],["dc.bibliographiccitation.lastpage","546"],["dc.bibliographiccitation.volume","94"],["dc.contributor.author","Prukop, Thomas"],["dc.contributor.author","Epplen, Dirk B."],["dc.contributor.author","Nientiedt, Tobias"],["dc.contributor.author","Wichert, Sven P."],["dc.contributor.author","Fledrich, Robert"],["dc.contributor.author","Stassart, Ruth Martha"],["dc.contributor.author","Rossner, Moritz J."],["dc.contributor.author","Edgar, Julia M."],["dc.contributor.author","Werner, Hauke B."],["dc.contributor.author","Nave, Klaus-Armin"],["dc.contributor.author","Sereda, Michael W."],["dc.date.accessioned","2018-11-07T09:41:24Z"],["dc.date.available","2018-11-07T09:41:24Z"],["dc.date.issued","2014"],["dc.description.abstract","Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disease, characterized by ataxia, intellectual disability, epilepsy, and premature death. In the majority of cases, PMD is caused by duplication of PLP1 that is expressed in myelinating oligodendrocytes. Despite detailed knowledge of PLP1, there is presently no curative therapy for PMD. We used a Plp1 transgenic PMD mouse model to test the therapeutic effect of Lonaprisan, an antagonist of the nuclear progesterone receptor, in lowering Plp1 mRNA overexpression. We applied placebo-controlled Lonaprisan therapy to PMD mice for 10 weeks and performed the grid slip analysis to assess the clinical phenotype. Additionally, mRNA expression and protein accumulation as well as histological analysis of the central nervous system were performed. Although Plp1 mRNA levels are increased 1.8-fold in PMD mice compared to wild-type controls, daily Lonaprisan treatment reduced overexpression at the RNA level to about 1.5-fold, which was sufficient to significantly improve the poor motor phenotype. Electron microscopy confirmed a 25% increase in the number of myelinated axons in the corticospinal tract when compared to untreated PMD mice. Microarray analysis revealed the upregulation of proapoptotic genes in PMD mice that could be partially rescued by Lonaprisan treatment, which also reduced microgliosis, astrogliosis, and lymphocyte infiltration."],["dc.identifier.doi","10.1016/j.ajhg.2014.03.001"],["dc.identifier.isi","000333765300005"],["dc.identifier.pmid","24680886"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33720"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cell Press"],["dc.relation.issn","1537-6605"],["dc.relation.issn","0002-9297"],["dc.title","Progesterone Antagonist Therapy in a Pelizaeus-Merzbacher Mouse Model"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2006Journal Article
    [["dc.bibliographiccitation.firstpage","77"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Molecular Neuroscience"],["dc.bibliographiccitation.lastpage","88"],["dc.bibliographiccitation.volume","28"],["dc.contributor.author","Horste, GMZ"],["dc.contributor.author","Prukop, Thomas"],["dc.contributor.author","Nave, K. A."],["dc.contributor.author","Sereda, Michael W."],["dc.date.accessioned","2018-11-07T10:36:54Z"],["dc.date.available","2018-11-07T10:36:54Z"],["dc.date.issued","2006"],["dc.description.abstract","Charcot-Marie-Tooth (CMT) disease is a common hereditary neuropathy that causes progressive distally pronounced muscle weakness and can lead to life-long disability in patients. In most cases, the disorder has been associated with a partial duplication of human chromosome 17 (CMT1A), causing 1.5-fold overexpression of the peripheral myelin protein 22 kDa (PMP22). Increased PMP22 gene dosage results in demyelination, secondary axonal loss, and neurogenic muscle atrophy. Experimental therapeutic approaches based on the role of progesterone and ascorbic acid in myelin formation recently have reached preclinical proof-of-principle trials in rodents. It was shown that progesterone receptor antagonists can reduce PMP22 overexpression and clinical severity in a CMT1A rat model. Furthermore, ascorbic acid treatment reduced premature death and demyelination in a CMT1A mouse model. Thus, basic research has opened up new vistas for the understanding and treatment of hereditary neuropathies."],["dc.identifier.doi","10.1385/JMN:28:1:77"],["dc.identifier.isi","000236438000007"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/45435"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.relation.issn","0895-8696"],["dc.title","Myelin disorders causes and perspectives of Charcot-Marie-Tooth neuropathy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2013Conference Abstract
    [["dc.bibliographiccitation.journal","Glia"],["dc.bibliographiccitation.volume","61"],["dc.contributor.author","Kungl, Theresa"],["dc.contributor.author","Nientiedt, T."],["dc.contributor.author","Neufeld, K. J."],["dc.contributor.author","Sereda, Michael W."],["dc.contributor.author","Nave, K-A."],["dc.date.accessioned","2018-11-07T09:23:23Z"],["dc.date.available","2018-11-07T09:23:23Z"],["dc.date.issued","2013"],["dc.format.extent","S142"],["dc.identifier.isi","000320408400456"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/29565"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.conference","11th European Meeting on Glial Cell Function in Health and Disease"],["dc.relation.eventlocation","Berlin, GERMANY"],["dc.relation.issn","0894-1491"],["dc.title","2 ',3 '-CYCLIC NUCLEOTIDE 3 '-PHOSPHODIESTERASE (CNP) DEFICIENCY CAUSES AXONAL LOSS AND HYPERMYELINATION IN THE SENSORY PERIPHERAL NERVOUS SYSTEM"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS