Options
Wodtke, Alec Michael
Loading...
Preferred name
Wodtke, Alec Michael
Official Name
Wodtke, Alec Michael
Alternative Name
Wodtke, Alec M.
Wodtke, A. M.
Wodtke, Alec
Wodtke, A.
Main Affiliation
Now showing 1 - 10 of 26
2017Journal Article [["dc.bibliographiccitation.firstpage","4887"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry Letters"],["dc.bibliographiccitation.lastpage","4892"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Wagner, Roman J. V."],["dc.contributor.author","Henning, Niklas"],["dc.contributor.author","Krüger, Bastian C."],["dc.contributor.author","Park, G. Barratt"],["dc.contributor.author","Altschäffel, Jan"],["dc.contributor.author","Kandratsenka, Alexander"],["dc.contributor.author","Wodtke, Alec M."],["dc.contributor.author","Schäfer, Tim"],["dc.date.accessioned","2020-12-10T15:22:46Z"],["dc.date.available","2020-12-10T15:22:46Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1021/acs.jpclett.7b02207"],["dc.identifier.issn","1948-7185"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73533"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Vibrational Relaxation of Highly Vibrationally Excited CO Scattered from Au(111): Evidence for CO – Formation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","680"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","684"],["dc.bibliographiccitation.volume","115"],["dc.contributor.author","Kandratsenka, Alexander"],["dc.contributor.author","Jiang, Hongyan"],["dc.contributor.author","Dorenkamp, Yvonne"],["dc.contributor.author","Janke, Svenja M."],["dc.contributor.author","Kammler, Marvin"],["dc.contributor.author","Wodtke, Alec Michael"],["dc.contributor.author","Bünermann, Oliver"],["dc.date.accessioned","2020-12-10T18:12:47Z"],["dc.date.available","2020-12-10T18:12:47Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1073/pnas.1710587115"],["dc.identifier.eissn","1091-6490"],["dc.identifier.issn","0027-8424"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74499"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area A | A04 Kontrolle von Energiedissipation an Oberflächen mittels einstellbaren Eigenschaften von Grenzflächen"],["dc.title","Unified description of H-atom–induced chemicurrents and inelastic scattering"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.firstpage","21791"],["dc.bibliographiccitation.issue","47"],["dc.bibliographiccitation.journal","Journal of the American Chemical Society"],["dc.bibliographiccitation.lastpage","21799"],["dc.bibliographiccitation.volume","144"],["dc.contributor.author","Borodin, Dmitriy"],["dc.contributor.author","Galparsoro, Oihana"],["dc.contributor.author","Rahinov, Igor"],["dc.contributor.author","Fingerhut, Jan"],["dc.contributor.author","Schwarzer, Michael"],["dc.contributor.author","Hörandl, Stefan"],["dc.contributor.author","Auerbach, Daniel J."],["dc.contributor.author","Kandratsenka, Alexander"],["dc.contributor.author","Schwarzer, Dirk"],["dc.contributor.author","Kitsopoulos, Theofanis N."],["dc.contributor.author","Wodtke, Alec M."],["dc.date.accessioned","2022-12-01T08:30:47Z"],["dc.date.available","2022-12-01T08:30:47Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1021/jacs.2c10458"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/117981"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","1520-5126"],["dc.relation.issn","0002-7863"],["dc.title","Steric Hindrance of NH\n 3\n Diffusion on Pt(111) by Co-Adsorbed O-Atoms"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.firstpage","394"],["dc.bibliographiccitation.issue","6604"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.lastpage","398"],["dc.bibliographiccitation.volume","377"],["dc.contributor.author","Borodin, Dmitriy"],["dc.contributor.author","Hertl, Nils"],["dc.contributor.author","Park, G. Barratt"],["dc.contributor.author","Schwarzer, Michael"],["dc.contributor.author","Fingerhut, Jan"],["dc.contributor.author","Wang, Yingqi"],["dc.contributor.author","Zuo, Junxiang"],["dc.contributor.author","Nitz, Florian"],["dc.contributor.author","Skoulatakis, Georgios"],["dc.contributor.author","Kandratsenka, Alexander"],["dc.contributor.author","Wodtke, Alec M."],["dc.date.accessioned","2022-09-01T09:50:47Z"],["dc.date.available","2022-09-01T09:50:47Z"],["dc.date.issued","2022"],["dc.description.abstract","There is wide interest in developing accurate theories for predicting rates of chemical reactions that occur at metal surfaces, especially for applications in industrial catalysis. Conventional methods contain many approximations that lack experimental validation. In practice, there are few reactions where sufficiently accurate experimental data exist to even allow meaningful comparisons to theory. Here, we present experimentally derived thermal rate constants for hydrogen atom recombination on platinum single-crystal surfaces, which are accurate enough to test established theoretical approximations. A quantum rate model is also presented, making possible a direct evaluation of the accuracy of commonly used approximations to adsorbate entropy. We find that neglecting the wave nature of adsorbed hydrogen atoms and their electronic spin degeneracy leads to a 10× to 1000× overestimation of the rate constant for temperatures relevant to heterogeneous catalysis. These quantum effects are also found to be important for nanoparticle catalysts."],["dc.description.abstract","Making surface chemistry more exact\n \n Accurate description of elementary steps of chemical reactions at surfaces is a long-standing challenge because of the lack of reliable experimental measurements of the corresponding rate constants, which also makes it impossible to rigorously validate theoretical estimates. Even for reactions as simple as thermal recombination of hydrogen atoms on platinum surfaces, previous experimental rate constants have only been obtained with large uncertainties. Using velocity-resolved kinetics and ion imaging–based calibration of absolute molecular beam fluxes, Borodin\n et al\n . managed to overcome established experimental difficulties and report unprecedentedly accurate rate constants for this reaction over a wide temperature range. They also demonstrate a parameter-free model that quantitatively reproduces the experiment, opening up new vistas for the growing field of computational heterogeneous catalysis. —YS"],["dc.description.abstract","Surface reaction rate constants were measured accurately so that a meaningful comparison with theory can now be made."],["dc.identifier.doi","10.1126/science.abq1414"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113803"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","1095-9203"],["dc.relation.issn","0036-8075"],["dc.title","Quantum effects in thermal reaction rates at metal surfaces"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","19904"],["dc.bibliographiccitation.issue","30"],["dc.bibliographiccitation.journal","Physical Chemistry Chemical Physics"],["dc.bibliographiccitation.lastpage","19915"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Park, G. Barratt"],["dc.contributor.author","Krüger, Bastian C."],["dc.contributor.author","Meyer, Sven"],["dc.contributor.author","Kandratsenka, Alexander"],["dc.contributor.author","Wodtke, Alec M."],["dc.contributor.author","Schäfer, Tim"],["dc.date.accessioned","2021-06-01T10:50:48Z"],["dc.date.available","2021-06-01T10:50:48Z"],["dc.date.issued","2017"],["dc.description.abstract","Formaldehyde exhibits a high degree of a -axis (“twirling”) rotational excitation about the CO bond axis, when directly scattered from the Au(111) surface."],["dc.description.abstract","The conversion of translational to rotational motion often plays a major role in the trapping of small molecules at surfaces, a crucial first step for a wide variety chemical processes that occur at gas–surface interfaces. However, to date most quantum-state resolved surface scattering experiments have been performed on diatomic molecules, and little detailed information is available about how the structure of nonlinear polyatomic molecules influences the mechanisms for energy exchange with surfaces. In the current work, we employ a new rotationally resolved 1 + 1′ resonance-enhanced multiphoton ionization (REMPI) scheme to measure the rotational distribution in formaldehyde molecules directly scattered from the Au(111) surface at incidence kinetic energies in the range 0.3–1.2 eV. The results indicate a pronounced propensity to excite a -axis rotation (twirling) rather than b - or c -axis rotation (tumbling or cartwheeling), and are consistent with a rotational rainbow scattering model. Classical trajectory calculations suggest that the effect arises—to zeroth order—from the three-dimensional shape of the molecule (steric effects). Analysis suggests that the high degree of rotational excitation has a substantial influence on the trapping probability of formaldehyde at incidence translational energies above 0.5 eV."],["dc.identifier.doi","10.1039/C7CP03922K"],["dc.identifier.eissn","1463-9084"],["dc.identifier.issn","1463-9076"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86789"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1463-9084"],["dc.relation.issn","1463-9076"],["dc.title","An axis-specific rotational rainbow in the direct scatter of formaldehyde from Au(111) and its influence on trapping probability"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.firstpage","441"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","The Journal of Physical Chemistry Letters"],["dc.bibliographiccitation.lastpage","446"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Krueger, Bastian Christopher"],["dc.contributor.author","Meyer, Sven"],["dc.contributor.author","Kandratsenka, Alexander"],["dc.contributor.author","Wodtke, Alec Michael"],["dc.contributor.author","Schaefer, Tim"],["dc.date.accessioned","2018-11-07T10:18:20Z"],["dc.date.available","2018-11-07T10:18:20Z"],["dc.date.issued","2016"],["dc.description.abstract","Multiquantum relaxation of highly vibrationally excited nitric oxide on noble metals has become one of the best studied examples of the Born-Oppenheimer approximation's failure to describe molecular interactions at metal surfaces. When first reported, relaxation of highly vibrationally excited NO occurring in collisions with Au(In) surfaces exhibited the largest vibrational inelasticity seen in molecule-surface collisions, and no system has been found to date exhibiting a greater vibrational inelasticity. In this work, we compare the relaxation of NO(v = 11) in scattering events on Ag(111) to that on Au(111). The relaxation probability and the average vibrational energy loss are much higher when scattering from Ag( HI). We discuss possible reasons for this remarkable phenomenon, which may be related to the dissociation of NO, possible on Ag(111) at lower energy compared with Au(111)."],["dc.identifier.doi","10.1021/acs.jpclett.5b02448"],["dc.identifier.isi","000369774400013"],["dc.identifier.pmid","26760437"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41416"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Chemical Soc"],["dc.relation.issn","1948-7185"],["dc.title","Vibrational Inelasticity of Highly Vibrationally Excited NO on Ag(111)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2022Journal Article [["dc.bibliographiccitation.journal","Nature"],["dc.contributor.author","Choudhury, Arnab"],["dc.contributor.author","DeVine, Jessalyn A."],["dc.contributor.author","Sinha, Shreya"],["dc.contributor.author","Lau, Jascha A."],["dc.contributor.author","Kandratsenka, Alexander"],["dc.contributor.author","Schwarzer, Dirk"],["dc.contributor.author","Saalfrank, Peter"],["dc.contributor.author","Wodtke, Alec M."],["dc.date.accessioned","2022-11-01T10:16:42Z"],["dc.date.available","2022-11-01T10:16:42Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1038/s41586-022-05451-0"],["dc.identifier.pii","5451"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/116632"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-605"],["dc.relation.eissn","1476-4687"],["dc.relation.issn","0028-0836"],["dc.rights.uri","https://www.springer.com/tdm"],["dc.title","Condensed phase isomerization through tunneling gateways"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1461"],["dc.bibliographiccitation.issue","6510"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.lastpage","1465"],["dc.bibliographiccitation.volume","369"],["dc.contributor.author","Borodin, Dmitriy"],["dc.contributor.author","Rahinov, Igor"],["dc.contributor.author","Shirhatti, Pranav R."],["dc.contributor.author","Huang, Meng"],["dc.contributor.author","Kandratsenka, Alexander"],["dc.contributor.author","Auerbach, Daniel J."],["dc.contributor.author","Zhong, Tianli"],["dc.contributor.author","Guo, Hua"],["dc.contributor.author","Schwarzer, Dirk"],["dc.contributor.author","Kitsopoulos, Theofanis N."],["dc.contributor.author","Wodtke, Alec Michael"],["dc.date.accessioned","2021-04-14T08:32:52Z"],["dc.date.available","2021-04-14T08:32:52Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1126/science.abc9581"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84039"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","SFB 1073: Kontrolle von Energiewandlung auf atomaren Skalen"],["dc.relation","SFB 1073 | Topical Area A | A04 Kontrolle von Energiedissipation an Oberflächen mittels einstellbaren Eigenschaften von Grenzflächen"],["dc.relation.eissn","1095-9203"],["dc.relation.issn","0036-8075"],["dc.title","Following the microscopic pathway to adsorption through chemisorption and physisorption wells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","123"],["dc.contributor.author","Kumar, Sumit"],["dc.contributor.author","Jiang, Hongyan"],["dc.contributor.author","Schwarzer, Michael"],["dc.contributor.author","Kandratsenka, Alexander"],["dc.contributor.author","Schwarzer, Dirk"],["dc.contributor.author","Wodtke, Alec M."],["dc.date.accessioned","2020-12-10T18:25:50Z"],["dc.date.available","2020-12-10T18:25:50Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1103/PhysRevLett.123.156101"],["dc.identifier.eissn","1079-7114"],["dc.identifier.issn","0031-9007"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75851"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Vibrational Relaxation Lifetime of a Physisorbed Molecule at a Metal Surface"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","6916"],["dc.bibliographiccitation.issue","21"],["dc.bibliographiccitation.journal","Angewandte Chemie International Edition"],["dc.bibliographiccitation.lastpage","6920"],["dc.bibliographiccitation.volume","58"],["dc.contributor.author","Zhou, Linsen"],["dc.contributor.author","Kandratsenka, Alexander"],["dc.contributor.author","Campbell, Charles T."],["dc.contributor.author","Wodtke, Alec M."],["dc.contributor.author","Guo, Hua"],["dc.date.accessioned","2020-12-10T14:05:36Z"],["dc.date.available","2020-12-10T14:05:36Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1002/anie.v58.21"],["dc.identifier.eissn","1521-3773"],["dc.identifier.issn","1433-7851"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69591"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Origin of Thermal and Hyperthermal CO 2 from CO Oxidation on Pt Surfaces: The Role of Post‐Transition‐State Dynamics, Active Sites, and Chemisorbed CO 2"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI
- «
- 1 (current)
- 2
- 3
- »