Options
Churikova, Tatiana G.
Loading...
Preferred name
Churikova, Tatiana G.
Official Name
Churikova, Tatiana G.
Alternative Name
Churikova, T. G.
Churikova, Tatiana
Churikova, T.
Now showing 1 - 3 of 3
2019Journal Article [["dc.bibliographiccitation.firstpage","517"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Geology"],["dc.bibliographiccitation.lastpage","521"],["dc.bibliographiccitation.volume","47"],["dc.contributor.author","Tomanikova, Lubomira"],["dc.contributor.author","Savov, Ivan P."],["dc.contributor.author","Harvey, Jason"],["dc.contributor.author","de Hoog, Jan C.M."],["dc.contributor.author","Churikova, Tatiana G."],["dc.contributor.author","Yogodzinski, Gene M."],["dc.contributor.author","Gordeychik, Boris N."],["dc.date.accessioned","2020-12-10T18:37:08Z"],["dc.date.available","2020-12-10T18:37:08Z"],["dc.date.issued","2019"],["dc.description.abstract","Metasomatized subarc mantle is often regarded as one of the mantle reservoirs enriched in fluid-mobile elements (FMEs; e.g., B, Li, Cs, As, Sb, Ba, Rb, Pb), which, when subject to wet melting, will contribute to the characteristic FME-rich signature of arc volcanic rocks. Evidence of wet melts in the subarc mantle wedge is recorded in metasomatic amphibole-, phlogopite-, and pyroxene-bearing veins in ultramafic xenoliths recovered from arc volcanoes. Our new B and δ11B study of such veins in mantle xenoliths from Avachinsky and Shiveluch volcanoes, Kamchatka arc, indicates that slab-derived FMEs, including B and its characteristically high δ11B, are delivered directly to a melt that experiences limited interaction with the surrounding mantle before eruption. The exceptionally low B contents (from 0.2 to 3.1 μg g–1) and low δ11B (from –16.6‰ to +0.9‰) of mantle xenolith vein minerals are, instead, products of fluids and melts released from the isotopically light subducted and dehydrated altered oceanic crust and, to a lesser extent, from isotopically heavy serpentinite. Therefore, melting of amphibole- and phlogopite-bearing veins in a metasomatized mantle wedge cannot alone produce the characteristic FME geochemistry of arc volcanic rocks, which require a comparatively large, isotopically heavy and B-rich serpentinite-derived fluid component in their source"],["dc.identifier.doi","10.1130/G46092.1"],["dc.identifier.issn","0091-7613"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16295"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76851"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","0091-7613"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","A limited role for metasomatized subarc mantle in the generation of boron isotope signatures of arc volcanic rocks"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2010Journal Article [["dc.bibliographiccitation.firstpage","659"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Contributions to Mineralogy and Petrology"],["dc.bibliographiccitation.lastpage","687"],["dc.bibliographiccitation.volume","159"],["dc.contributor.author","Volynets, Anna O."],["dc.contributor.author","Churikova, Tatiana G."],["dc.contributor.author","Woerner, Gerhard"],["dc.contributor.author","Gordeychik, Boris N."],["dc.contributor.author","Layer, Paul"],["dc.date.accessioned","2018-11-07T08:43:29Z"],["dc.date.available","2018-11-07T08:43:29Z"],["dc.date.issued","2010"],["dc.description.abstract","New (40)Ar/(39)Ar and published (14)C ages constrain voluminous mafic volcanism of the Kamchatka back-arc to Miocene (3-6 Ma) and Late Pleistocene to Holocene (< 1 Ma) times. Trace elements and isotopic compositions show that older rocks derived from a depleted mantle through subduction fluid-flux melting (> 20%). Younger rocks form in a back arc by lower melting degrees involving enriched mantle components. The arc front and Central Kamchatka Depression are also underlain by plateau lavas and shield volcanoes of Late Pleistocene age. The focus of these voluminous eruptions thus migrated in time and may be the result of a high fluid flux in a setting where the Emperor seamount subducts and the slab steepens during rollback during terrain accretions. The northern termination of Holocene volcanism locates the edge of the subducting Pacific plate below Kamchatka, a \"slab-edge-effect\" is not observed in the back arc region."],["dc.identifier.doi","10.1007/s00410-009-0447-9"],["dc.identifier.isi","000276276300004"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?goescholar/4176"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/19974"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0010-7999"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Mafic Late Miocene-Quaternary volcanic rocks in the Kamchatka back arc region: implications for subduction geometry and slab history at the Pacific-Aleutian junction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS2018Journal Article [["dc.bibliographiccitation.artnumber","11775"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Gordeychik, Boris N."],["dc.contributor.author","Churikova, Tatiana G."],["dc.contributor.author","Kronz, Andreas"],["dc.contributor.author","Sundermeyer, Caren"],["dc.contributor.author","Simakin, Alexander"],["dc.contributor.author","Wörner, Gerhard"],["dc.date.accessioned","2018-12-18T10:55:41Z"],["dc.date.available","2018-12-18T10:55:41Z"],["dc.date.issued","2018"],["dc.description.abstract","Complex core-rim zoning of Mg-Fe-Ni-Ca-Cr-Al-P in high-Mg olivine crystals from a tuff ring of Shiveluch volcano, Kamchatka, enables reconstruction of the entire olivine crystallization history from mantle conditions to eruption. Bell-shaped Fo86-92 and Ni profiles in crystal cores were formed by diffusion after mixing with evolved magma. Diffusion proceeded to the centres of crystals and completely equilibrated Fo and Ni in some crystals. Diffusion times extracted from Fo and Ni core profiles range from 100 to 2000 days. During subsequent mixing with mafic mantle-equilibrated melt, the cores were partially dissolved and overgrown by Fo90 olivine. Times extracted from Fo and Ni diffusion profiles across the resorption interface between the core and its overgrowth range within 1-10 days, which corresponds to the time of magma ascent to the surface. The overgrowth shows identical smooth Fo-Ni decreasing zoning patterns for all crystals towards the margin, indicating that all crystals shared the same growth history after last mixing event prior to eruption. At the same time, Ca, and to an even greater extent Cr, Al, and P have oscillatory growth patterns in the crystals overgrowth. Our data show that magma ascent can be extremely short during maar/tuff ring eruption."],["dc.identifier.doi","10.1038/s41598-018-30133-1"],["dc.identifier.pmid","30082716"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15442"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/57129"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.relation.eissn","2045-2322"],["dc.relation.orgunit","Fakultät für Geowissenschaften und Geographie"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Growth of, and diffusion in, olivine in ultra-fast ascending basalt magmas from Shiveluch volcano"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC