Now showing 1 - 3 of 3
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Nicolas, Jan-David"],["dc.contributor.author","Khan, Amara"],["dc.contributor.author","Markus, Andrea"],["dc.contributor.author","Mohamed, Belal A."],["dc.contributor.author","Toischer, Karl"],["dc.contributor.author","Alves, Frauke"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2021-04-14T08:31:46Z"],["dc.date.available","2021-04-14T08:31:46Z"],["dc.date.issued","2020"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41598-020-76163-6"],["dc.identifier.pmid","33168890"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17813"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83706"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/102"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","2045-2322"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.relation.workinggroup","RG Alves (Translationale Molekulare Bildgebung)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","biomedical tomography"],["dc.title","X-ray diffraction and second harmonic imaging reveal new insights into structural alterations caused by pressure-overload in murine hearts"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1309"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","1323"],["dc.bibliographiccitation.volume","119"],["dc.contributor.author","Reichardt, Marius"],["dc.contributor.author","Neuhaus, Charlotte"],["dc.contributor.author","Nicolas, Jan-David"],["dc.contributor.author","Bernhardt, Marten"],["dc.contributor.author","Toischer, Karl"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2021-04-14T08:32:06Z"],["dc.date.available","2021-04-14T08:32:06Z"],["dc.date.issued","2020"],["dc.description.abstract","We present a multiscale imaging approach to characterize the structure of isolated adult murine cardiomyocytes based on a combination of full-field three-dimensional coherent x-ray imaging and scanning x-ray diffraction. Using these modalities, we probe the structure from the molecular to the cellular scale. Holographic projection images on freeze-dried cells have been recorded using highly coherent and divergent x-ray waveguide radiation. Phase retrieval and tomographic reconstruction then yield the three-dimensional electron density distribution with a voxel size below 50 nm. In the reconstruction volume, myofibrils, sarcomeric organization, and mitochondria can be visualized and quantified within a single cell without sectioning. Next, we use microfocusing optics by compound refractive lenses to probe the diffraction signal of the actomyosin lattice. Comparison between recordings of chemically fixed and untreated, living cells indicate that the characteristic lattice distances shrink by ∼10% upon fixation."],["dc.identifier.doi","10.1016/j.bpj.2020.08.019"],["dc.identifier.pmid","32937109"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83808"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/151"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.issn","0006-3495"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","biomedical tomography"],["dc.title","X-Ray Structural Analysis of Single Adult Cardiomyocytes: Tomographic Imaging and Microdiffraction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","151"],["dc.bibliographiccitation.journal","Progress in Biophysics and Molecular Biology"],["dc.bibliographiccitation.lastpage","165"],["dc.bibliographiccitation.volume","144"],["dc.contributor.author","Nicolas, Jan-David"],["dc.contributor.author","Bernhardt, Marten"],["dc.contributor.author","Schlick, Susanne F."],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Khan, Amara"],["dc.contributor.author","Markus, Andrea"],["dc.contributor.author","Alves, Frauke"],["dc.contributor.author","Toischer, Karl"],["dc.contributor.author","Salditt, Tim"],["dc.date.accessioned","2020-03-04T13:36:29Z"],["dc.date.available","2020-03-04T13:36:29Z"],["dc.date.issued","2019"],["dc.description.abstract","With the development of advanced focusing optics for x-rays, we can now use x-ray beams with spot sizes in the micro- or nanometer range to scan cells and large areas of tissues and continuously record the diffraction signals. From this data, x-ray scattering maps or so-called x-ray darkfield images are computed showing how different types of cells or regions of tissues differ in their diffraction intensity. At the same time a diffraction pattern is available for each scan point which encodes the local nanostructure, averaged over many contributing constituents illuminated by the beam. In this work we have exploited these new capabilities of scanning x-ray diffraction to investigate cardiac muscle cells as well as cardiac tissue. We give examples of how cardiac cells, especially living, cultured cells, can be prepared to be compatible with the instrumentation constraints of nano- or micro-diffraction instruments. Furthermore, we show how the developmental stage, ranging from neonatal to adult cells, as well as the final preparation state of the cardiomyocytes influences the recorded scattering signal and how these diffraction signals compare to the structure of a fully developed cardiac muscle."],["dc.identifier.doi","10.1016/j.pbiomolbio.2018.05.012"],["dc.identifier.pmid","29914693"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63107"],["dc.language.iso","en"],["dc.relation.eissn","1873-1732"],["dc.relation.issn","0079-6107"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Salditt (Structure of Biomolecular Assemblies and X-Ray Physics)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","x-ray scattering"],["dc.title","X-ray diffraction imaging of cardiac cells and tissue"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC