Options
Steffan-Dewenter, Ingolf D.
Loading...
Preferred name
Steffan-Dewenter, Ingolf D.
Official Name
Steffan-Dewenter, Ingolf D.
Alternative Name
Steffan-Dewenter, I. D.
Steffan-Dewenter, Ingolf
Steffan-Dewenter, I.
Now showing 1 - 10 of 84
2008Journal Article [["dc.bibliographiccitation.firstpage","153"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","American Journal of Botany"],["dc.bibliographiccitation.lastpage","157"],["dc.bibliographiccitation.volume","90"],["dc.contributor.author","Klein, Alexandra‐Maria"],["dc.contributor.author","Steffan-Dewenter, Ingolf"],["dc.contributor.author","Tscharntke, Teja"],["dc.date.accessioned","2017-09-07T11:50:53Z"],["dc.date.available","2017-09-07T11:50:53Z"],["dc.date.issued","2008"],["dc.identifier.doi","10.3732/ajb.90.1.153"],["dc.identifier.gro","3149938"],["dc.identifier.pmid","21659091"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6650"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.relation.issn","0002-9122"],["dc.title","Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae)"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2013Journal Article [["dc.bibliographiccitation.firstpage","1608"],["dc.bibliographiccitation.issue","6127"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.lastpage","1611"],["dc.bibliographiccitation.volume","339"],["dc.contributor.author","Garibaldi, L. A."],["dc.contributor.author","Steffan-Dewenter, I."],["dc.contributor.author","Winfree, R."],["dc.contributor.author","Aizen, M. A."],["dc.contributor.author","Bommarco, R."],["dc.contributor.author","Cunningham, S. A."],["dc.contributor.author","Kremen, C."],["dc.contributor.author","Carvalheiro, L. G."],["dc.contributor.author","Harder, L. D."],["dc.contributor.author","Afik, O."],["dc.contributor.author","Bartomeus, I."],["dc.contributor.author","Benjamin, F."],["dc.contributor.author","Boreux, V."],["dc.contributor.author","Cariveau, D."],["dc.contributor.author","Chacoff, N. P."],["dc.contributor.author","Dudenhöffer, Jan-H."],["dc.contributor.author","Freitas, B. M."],["dc.contributor.author","Ghazoul, J."],["dc.contributor.author","Greenleaf, S."],["dc.contributor.author","Hipolito, J."],["dc.contributor.author","Holzschuh, A."],["dc.contributor.author","Howlett, B."],["dc.contributor.author","Isaacs, R."],["dc.contributor.author","Javorek, S. K."],["dc.contributor.author","Kennedy, C. M."],["dc.contributor.author","Krewenka, K. M."],["dc.contributor.author","Krishnan, S."],["dc.contributor.author","Mandelik, Y."],["dc.contributor.author","Mayfield, M. M."],["dc.contributor.author","Motzke, I."],["dc.contributor.author","Munyuli, T."],["dc.contributor.author","Nault, B. A."],["dc.contributor.author","Otieno, M."],["dc.contributor.author","Petersen, J."],["dc.contributor.author","Pisanty, G."],["dc.contributor.author","Potts, S. G."],["dc.contributor.author","Rader, R."],["dc.contributor.author","Ricketts, T. H."],["dc.contributor.author","Rundlof, M."],["dc.contributor.author","Seymour, C. L."],["dc.contributor.author","Schuepp, C."],["dc.contributor.author","Szentgyorgyi, H."],["dc.contributor.author","Taki, H."],["dc.contributor.author","Tscharntke, T."],["dc.contributor.author","Vergara, C. H."],["dc.contributor.author","Viana, B. F."],["dc.contributor.author","Wanger, T. C."],["dc.contributor.author","Westphal, C."],["dc.contributor.author","Williams, N."],["dc.contributor.author","Klein, A. M."],["dc.date.accessioned","2017-09-07T11:54:48Z"],["dc.date.available","2017-09-07T11:54:48Z"],["dc.date.issued","2013"],["dc.description.abstract","The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields."],["dc.identifier.doi","10.1126/science.1230200"],["dc.identifier.gro","3150108"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6838"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","chake"],["dc.relation.issn","0036-8075"],["dc.title","Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2008Journal Article [["dc.bibliographiccitation.firstpage","1399"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Biological Invasions"],["dc.bibliographiccitation.lastpage","1409"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Bos, Merijn M."],["dc.contributor.author","Tylianakis, Jason M."],["dc.contributor.author","Steffan-Dewenter, Ingolf"],["dc.contributor.author","Tscharntke, Teja"],["dc.date.accessioned","2017-09-07T11:53:48Z"],["dc.date.available","2017-09-07T11:53:48Z"],["dc.date.issued","2008"],["dc.description.abstract","Throughout the tropics, agroforests are often the only remaining habitat with a considerable tree cover. Agroforestry systems can support high numbers of species and are therefore frequently heralded as the future for tropical biodiversity conservation. However, anthropogenic habitat modification can facilitate species invasions that may suppress native fauna. We compared the ant fauna of lower canopy trees in natural rainforest sites with that of cacao trees in agroforests in Central Sulawesi, Indonesia in order to assess the effects of agroforestry on occurrence of the Yellow Crazy Ant Anoplolepis gracilipes, a common invasive species in the area, and its effects on overall ant richness. The agroforests differed in the type of shade-tree composition, tree density, canopy cover, and distance to the village. On average, 43% of the species in agroforests also occurred in the lower canopy of nearby primary forest and the number of forest ant species that occurred on cacao trees was not related to agroforestry characteristics. However, A. gracilipes was the most common non-forest ant species, and forest ant richness decreased significantly with the presence of this species. Our results indicate that agroforestry may have promoted the occurrence of A. gracilipes, possibly because tree management in agroforests negatively affects ant species that depend on trees for nesting and foraging, whereas A. gracilipes is a generalist when it comes to nesting sites and food preference. Thus, agroforestry management that includes the thinning of tree stands can facilitate ant invasions, thereby threatening the potential of cultivated land for the conservation of tropical ant diversity."],["dc.identifier.doi","10.1007/s10530-008-9215-4"],["dc.identifier.gro","3149970"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6790"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6686"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","public"],["dc.relation.issn","1387-3547"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject","Agriculture; Biological invasion; Competition; Formicidae; Managed land; Microclimate; Interspecific interactions; Land use intensity"],["dc.title","The invasive Yellow Crazy Ant and the decline of forest ant diversity in Indonesian cacao agroforests"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2002Journal Article [["dc.bibliographiccitation.firstpage","288"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Oecologia"],["dc.bibliographiccitation.lastpage","296"],["dc.bibliographiccitation.volume","122"],["dc.contributor.author","Steffan-Dewenter, Ingolf"],["dc.contributor.author","Tscharntke, Teja"],["dc.date.accessioned","2017-09-07T11:50:55Z"],["dc.date.available","2017-09-07T11:50:55Z"],["dc.date.issued","2002"],["dc.identifier.doi","10.1007/s004420050034"],["dc.identifier.gro","3149956"],["dc.identifier.pmid","28308384"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6670"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.relation.issn","0029-8549"],["dc.title","Resource overlap and possible competition between honey bees and wild bees in central Europe"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2006Journal Article [["dc.bibliographiccitation.firstpage","303"],["dc.bibliographiccitation.issue","1608"],["dc.bibliographiccitation.journal","Proceedings of the Royal Society B: Biological Sciences"],["dc.bibliographiccitation.lastpage","313"],["dc.bibliographiccitation.volume","274"],["dc.contributor.author","Klein, Alexandra-Maria"],["dc.contributor.author","Vaissière, Bernard E"],["dc.contributor.author","Cane, J. H"],["dc.contributor.author","Steffan-Dewenter, Ingolf"],["dc.contributor.author","Cunningham, Saul A."],["dc.contributor.author","Kremen, Claire"],["dc.contributor.author","Tscharntke, Teja"],["dc.date.accessioned","2017-09-07T11:50:06Z"],["dc.date.available","2017-09-07T11:50:06Z"],["dc.date.issued","2006"],["dc.description.abstract","The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale."],["dc.identifier.doi","10.1098/rspb.2006.3721"],["dc.identifier.gro","3149835"],["dc.identifier.pmid","17164193"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6537"],["dc.language.iso","en"],["dc.notes.status","public"],["dc.relation.issn","0962-8452"],["dc.title","Importance of pollinators in changing landscapes for world crops"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2009Journal Article [["dc.bibliographiccitation.firstpage","491"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Animal Ecology"],["dc.bibliographiccitation.lastpage","500"],["dc.bibliographiccitation.volume","79"],["dc.contributor.author","Holzschuh, Andrea"],["dc.contributor.author","Steffan-Dewenter, Ingolf"],["dc.contributor.author","Tscharntke, Teja"],["dc.date.accessioned","2017-09-07T11:50:43Z"],["dc.date.available","2017-09-07T11:50:43Z"],["dc.date.issued","2009"],["dc.identifier.doi","10.1111/j.1365-2656.2009.01642.x"],["dc.identifier.gro","3149888"],["dc.identifier.pmid","20015213"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6596"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.relation.issn","0021-8790"],["dc.title","How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2007Journal Article [["dc.bibliographiccitation.firstpage","201"],["dc.bibliographiccitation.issue","2-4"],["dc.bibliographiccitation.journal","Agriculture, Ecosystems & Environment"],["dc.bibliographiccitation.lastpage","205"],["dc.bibliographiccitation.volume","120"],["dc.contributor.author","Bos, Merijn M."],["dc.contributor.author","Steffan-Dewenter, Ingolf"],["dc.contributor.author","Tscharntke, Teja"],["dc.date.accessioned","2017-09-07T11:53:52Z"],["dc.date.available","2017-09-07T11:53:52Z"],["dc.date.issued","2007"],["dc.description.abstract","The mortality of cacao fruits caused by early fruit abortion or insect and pathogen attacks was investigated in differently managedagroforestry systems in Central Sulawesi, Indonesia. Nine agroforestry systems shaded by three different types of tree stands were selected,which represented a decrease in structural heterogeneity: forest remnants, diverse planted trees and one or two species of planted leguminosetrees. After standardized manual cross-pollination, the development of 600 fruits on 54 trees (6 trees per agroforest) was followed during 18weeks of fruit development. In total, 432 of all fruits were lost before maturity, which seriously undermined yields. The proportion ofharvested fruits per tree (overall average: 27 4%) was not affected by canopy type. Although shade cover did not have a significant effect,losses due to fruit abortion were most likely under forest shade, where nitrogen-fixing leguminose shade trees were absent. Fruit losses due topathogenic infections and insect attacks increased with the homogenization of the agroforests, supporting the hypothesis that agriculturalhomogenization increases risks of pest outbreaks. In conclusion, shade management may be improved to increase yields from cacao usinghighly diversified natural shade agroforestry systems."],["dc.identifier.doi","10.1016/j.agee.2006.09.004"],["dc.identifier.gro","3150005"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6725"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.issn","0167-8809"],["dc.subject","Flower–fruit ratio; Helopeltis; Herbivory; Indonesia; Pollination; Phytophthora; Cacao yield"],["dc.title","Shade tree management affects fruit abortion, insect pests and pathogens of cacao"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2012Journal Article [["dc.bibliographiccitation.artnumber","e47192"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PloS one"],["dc.bibliographiccitation.lastpage","7"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Kessler, Michael"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Jungkunst, Hermann F."],["dc.contributor.author","Kluge, Jürgen"],["dc.contributor.author","Abrahamczyk, Stefan"],["dc.contributor.author","Bos, Merijn Marinus"],["dc.contributor.author","Buchori, Damayanti"],["dc.contributor.author","Gerold, Gerhard"],["dc.contributor.author","Gradstein, S. Robbert"],["dc.contributor.author","Köhler, Stefan"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Moser, Gerald"],["dc.contributor.author","Pitopang, Ramadhanil"],["dc.contributor.author","Saleh, Shahabuddin"],["dc.contributor.author","Schulze, Christian Hansjoachim"],["dc.contributor.author","Sporn, Simone Goda"],["dc.contributor.author","Steffan-Dewenter, Ingolf"],["dc.contributor.author","Tjitrosoedirdjo, Sri Sudarmiyati"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.editor","Bond-Lamberty, Ben"],["dc.date.accessioned","2018-07-05T16:08:40Z"],["dc.date.available","2018-07-05T16:08:40Z"],["dc.date.issued","2012"],["dc.description.abstract","Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential ‘win-win’ scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227–362 Mg C ha−1 to agroforests with 82–211 Mg C ha−1 showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2012"],["dc.identifier.doi","10.1371/journal.pone.0047192"],["dc.identifier.gro","3150069"],["dc.identifier.pmid","23077569"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8161"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/15169"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 2.5"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.5"],["dc.title","Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2007Journal Article [["dc.bibliographiccitation.firstpage","4973"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.lastpage","4978"],["dc.bibliographiccitation.volume","104"],["dc.contributor.author","Steffan-Dewenter, Ingolf"],["dc.contributor.author","Kessler, Michael"],["dc.contributor.author","Barkmann, Jan"],["dc.contributor.author","Bos, Merijn M."],["dc.contributor.author","Buchori, Damayanti"],["dc.contributor.author","Erasmi, Stefan"],["dc.contributor.author","Faust, Heiko"],["dc.contributor.author","Gerold, Gerhard"],["dc.contributor.author","Glenk, Klaus"],["dc.contributor.author","Gradstein, S. Robbert"],["dc.contributor.author","Guhardja, Edi"],["dc.contributor.author","Harteveld, Marieke"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Höhn, Patrick"],["dc.contributor.author","Kappas, Martin"],["dc.contributor.author","Köhler, Stefan"],["dc.contributor.author","Leuschner, Christoph"],["dc.contributor.author","Maertens, Miet"],["dc.contributor.author","Marggraf, Rainer"],["dc.contributor.author","Migge-Kleian, Sonja"],["dc.contributor.author","Mogea, Johanis"],["dc.contributor.author","Pitopang, Ramadhanil"],["dc.contributor.author","Schaefer, Matthias"],["dc.contributor.author","Schwarze, Stefan"],["dc.contributor.author","Sporn, Simone G."],["dc.contributor.author","Steingrebe, Andrea"],["dc.contributor.author","Tjitrosoedirdjo, Sri Sudarmiyati"],["dc.contributor.author","Tjitrosoemito, Soekisman"],["dc.contributor.author","Twele, André"],["dc.contributor.author","Weber, Robert"],["dc.contributor.author","Woltmann, Lars"],["dc.contributor.author","Zeller, Manfred"],["dc.contributor.author","Tscharntke, Teja"],["dc.date.accessioned","2017-09-07T11:44:51Z"],["dc.date.accessioned","2020-05-11T13:28:11Z"],["dc.date.available","2017-09-07T11:44:51Z"],["dc.date.available","2020-05-11T13:28:11Z"],["dc.date.issued","2007"],["dc.description.abstract","Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by ≈75% and species richness of forest-using species by ≈60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by ≈40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends."],["dc.identifier.doi","10.1073/pnas.0608409104"],["dc.identifier.gro","3148984"],["dc.identifier.scopus","2-s2.0-34247633507"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5623"],["dc.identifier.url","http://www.scopus.com/inward/record.url?eid=2-s2.0-34247633507&partnerID=MN8TOARS"],["dc.language.iso","en"],["dc.notes.intern","Faust Crossref Import"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.title","Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","4946"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Global Change Biology"],["dc.bibliographiccitation.lastpage","4957"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Lichtenberg, Elinor M."],["dc.contributor.author","Kennedy, Christina M."],["dc.contributor.author","Kremen, Claire"],["dc.contributor.author","Batáry, Péter"],["dc.contributor.author","Berendse, Frank"],["dc.contributor.author","Bommarco, Riccardo"],["dc.contributor.author","Bosque-Pérez, Nilsa A."],["dc.contributor.author","Carvalheiro, Luísa G."],["dc.contributor.author","Snyder, William E."],["dc.contributor.author","Williams, Neal M."],["dc.contributor.author","Winfree, Rachael"],["dc.contributor.author","Klatt, Björn K."],["dc.contributor.author","Åström, Sandra"],["dc.contributor.author","Benjamin, Faye"],["dc.contributor.author","Brittain, Claire"],["dc.contributor.author","Chaplin-Kramer, Rebecca"],["dc.contributor.author","Clough, Yann"],["dc.contributor.author","Danforth, Bryan"],["dc.contributor.author","Diekötter, Tim"],["dc.contributor.author","Eigenbrode, Sanford D."],["dc.contributor.author","Ekroos, Johan"],["dc.contributor.author","Elle, Elizabeth"],["dc.contributor.author","Freitas, Breno M."],["dc.contributor.author","Fukuda, Yuki"],["dc.contributor.author","Gaines-Day, Hannah R."],["dc.contributor.author","Grab, Heather"],["dc.contributor.author","Gratton, Claudio"],["dc.contributor.author","Holzschuh, Andrea"],["dc.contributor.author","Isaacs, Rufus"],["dc.contributor.author","Isaia, Marco"],["dc.contributor.author","Jha, Shalene"],["dc.contributor.author","Jonason, Dennis"],["dc.contributor.author","Jones, Vincent P."],["dc.contributor.author","Klein, Alexandra-Maria"],["dc.contributor.author","Krauss, Jochen"],["dc.contributor.author","Letourneau, Deborah K."],["dc.contributor.author","Macfadyen, Sarina"],["dc.contributor.author","Mallinger, Rachel E."],["dc.contributor.author","Martin, Emily A."],["dc.contributor.author","Martínez, Eliana"],["dc.contributor.author","Memmott, Jane"],["dc.contributor.author","Morandin, Lora"],["dc.contributor.author","Neame, Lisa"],["dc.contributor.author","Otieno, Mark"],["dc.contributor.author","Park, Mia G."],["dc.contributor.author","Pfiffner, Lukas"],["dc.contributor.author","Pocock, Michael J. O."],["dc.contributor.author","Ponce, Carlos"],["dc.contributor.author","Potts, Simon G."],["dc.contributor.author","Poveda, Katja"],["dc.contributor.author","Ramos, Mariangie"],["dc.contributor.author","Rosenheim, Jay A."],["dc.contributor.author","Rundlöf, Maj"],["dc.contributor.author","Sardiñas, Hillary"],["dc.contributor.author","Saunders, Manu E."],["dc.contributor.author","Schon, Nicole L."],["dc.contributor.author","Sciligo, Amber R."],["dc.contributor.author","Sidhu, C. Sheena"],["dc.contributor.author","Steffan-Dewenter, Ingolf"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Veselý, Milan"],["dc.contributor.author","Weisser, Wolfgang W."],["dc.contributor.author","Wilson, Julianna K."],["dc.contributor.author","Crowder, David W."],["dc.date.accessioned","2017-09-07T11:54:44Z"],["dc.date.available","2017-09-07T11:54:44Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1111/gcb.13714"],["dc.identifier.gro","3150092"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6822"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.relation.issn","1354-1013"],["dc.title","A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI