Options
Calapai, Antonino
Loading...
Preferred name
Calapai, Antonino
Official Name
Calapai, Antonino
Alternative Name
Calapai, A.
Now showing 1 - 2 of 2
2016Journal Article [["dc.bibliographiccitation.firstpage","35"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Behavior Research Methods"],["dc.bibliographiccitation.lastpage","45"],["dc.bibliographiccitation.volume","49"],["dc.contributor.author","Calapai, A."],["dc.contributor.author","Berger, M."],["dc.contributor.author","Niessing, M."],["dc.contributor.author","Heisig, K."],["dc.contributor.author","Brockhausen, R."],["dc.contributor.author","Treue, S."],["dc.contributor.author","Gail, A."],["dc.date.accessioned","2017-09-07T11:47:46Z"],["dc.date.available","2017-09-07T11:47:46Z"],["dc.date.issued","2016"],["dc.description.abstract","In neurophysiological studies with awake non-human primates (NHP), it is typically necessary to train the animals over a prolonged period of time on a behavioral paradigm before the actual data collection takes place. Rhesus monkeys (Macaca mulatta) are the most widely used primate animal models in system neuroscience. Inspired by existing joystick- or touch-screen-based systems designed for a variety of monkey species, we built and successfully employed a stand-alone cage-based training and testing system for rhesus monkeys (eXperimental Behavioral Intrument, XBI). The XBI is mobile and easy to handle by both experts and non-experts; animals can work with only minimal physical restraints, yet the ergonomic design successfully encourages stereotypical postures with a consistent positioning of the head relative to the screen. The XBI allows computer-controlled training of the monkeys with a large variety of behavioral tasks and reward protocols typically used in systems and cognitive neuroscience research."],["dc.identifier.doi","10.3758/s13428-016-0707-3"],["dc.identifier.gro","3150724"],["dc.identifier.pmid","26896242"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13181"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7512"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","1554-3528"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","A cage-based training, cognitive testing and enrichment system optimized for rhesus macaques in neuroscience research"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Journal Article [["dc.bibliographiccitation.artnumber","jn.00614.2017"],["dc.bibliographiccitation.journal","Journal of Neurophysiology"],["dc.contributor.author","Berger, Michael"],["dc.contributor.author","Calapai, Antonino"],["dc.contributor.author","Stephan, Valeska"],["dc.contributor.author","Niessing, Michael"],["dc.contributor.author","Burchardt, Leonore"],["dc.contributor.author","Gail, Alexander"],["dc.contributor.author","Treue, Stefan"],["dc.date.accessioned","2018-01-17T13:11:54Z"],["dc.date.available","2018-01-17T13:11:54Z"],["dc.date.issued","2017"],["dc.description.abstract","Teaching non-human primates the complex cognitive behavioral tasks that are central to cognitive neuroscience research is an essential and challenging endeavor. It is crucial for the scientific success that the animals learn to interpret the often complex task rules, and reliably and enduringly act accordingly. To achieve consistent behavior and comparable learning histories across animals, it is desirable to standardize training protocols. Automatizing the training can significantly reduce the time invested by the person training the animal. And self-paced training schedules with individualized learning speeds based on automatic updating of task conditions could enhance the animals' motivation and welfare. We developed a training paradigm for across-task unsupervised training (AUT) of successively more complex cognitive tasks to be administered through a stand-alone housing-based system optimized for rhesus monkeys in neuroscience research settings (Calapai et al. 2016). The AUT revealed inter-individual differences in long-term learning progress between animals, helping to characterize learning personalities, and commonalities, helping to identify easier and more difficult learning steps in the training protocol. Our results demonstrate that (1) rhesus monkeys stay engaged with the AUT over months despite access to water and food outside the experimental sessions, but with lower numbers of interaction compared to conventional fluid-controlled training; (2) with unsupervised training across sessions and task levels, rhesus monkeys can learn tasks of sufficient complexity for state-of-the art cognitive neuroscience in their housing environment; (3) AUT learning progress is primarily determined by the number of interactions with the system rather than the mere exposure time."],["dc.identifier.doi","10.1152/jn.00614.2017"],["dc.identifier.pmid","29142094"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11705"],["dc.language.iso","en"],["dc.notes.status","zu prüfen"],["dc.relation.eissn","1522-1598"],["dc.title","Standardized automated training of rhesus monkeys for neuroscience research in their housing environment"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC