Now showing 1 - 10 of 17
  • 2006Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","11440"],["dc.bibliographiccitation.issue","31"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.lastpage","11445"],["dc.bibliographiccitation.volume","103"],["dc.contributor.author","Donnert, Gerald"],["dc.contributor.author","Keller, Jan"],["dc.contributor.author","Medda, Rebecca"],["dc.contributor.author","Andrei, M. Alexandra"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Lührmann, Reinhard"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:52:39Z"],["dc.date.available","2017-09-07T11:52:39Z"],["dc.date.issued","2006"],["dc.description.abstract","We demonstrate far-field fluorescence microscopy with a focal-plane resolution of 15-20 nm in biological samples. The 10- to 12-fold multilateral increase in resolution below the diffraction barrier has been enabled by the elimination of molecular triplet state excitation as a major source of photobleaching of a number of dyes in stimulated emission depletion microscopy. Allowing for relaxation of the triplet state between subsequent excitation-depletion cycles yields an up to 30-fold increase in total fluorescence signal as compared with reported stimulated emission depletion illumination schemes. Moreover, it enables the reduction of the effective focal spot area by up to approximate to 140-fold below that given by diffraction. Triplet-state relaxation can be realized either by reducing the repetition rate of pulsed lasers or by increasing the scanning speed such that the build-up of the triplet state is effectively prevented. This resolution in immunofluorescence imaging is evidenced by revealing nanoscale protein patterns on endosomes, the punctuated structures of intermediate filaments in neurons, and nuclear protein speckles in mammalian cells with conventional optics. The reported performance of diffraction-unlimited fluorescence microscopy opens up a pathway for addressing fundamental problems in the life sciences."],["dc.identifier.doi","10.1073/pnas.0604965103"],["dc.identifier.gro","3143651"],["dc.identifier.isi","000239616400005"],["dc.identifier.pmid","16864773"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1188"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0027-8424"],["dc.title","Macromolecular-scale resolution in biological fluorescence microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","606"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Microscopy research and technique"],["dc.bibliographiccitation.lastpage","617"],["dc.bibliographiccitation.volume","73"],["dc.contributor.author","Geumann, Ulf"],["dc.contributor.author","Schaefer, Christina"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Rizzoli, Silvio"],["dc.date.accessioned","2017-09-07T11:46:02Z"],["dc.date.available","2017-09-07T11:46:02Z"],["dc.date.issued","2010"],["dc.description.abstract","In the plasma membrane, membrane proteins are frequently organized in microdomains that are stabilized both by protein-protein and protein-lipid interactions, with the membrane lipid cholesterol being instrumental for microdomain stability. However, it is unclear whether such microdomains persist during endocytotic membrane trafficking. We used stimulated emission-depletion microscopy to investigate the domain structure of the endosomes. We developed a semiautomatic method for counting the individual domains, an approach that we have validated by immunoelectron microscopy. We found that in endosomes derived from neuroendocrine PC12 cells synaptophysin and several SNARE proteins are organized in microdomains. Cholesterol depletion by methyl-beta-cyclodextrin disintegrates most of the domains. Interestingly, no change in the frequency of microdomains was observed when endosomes were fused with protein-free liposomes of similar size (in what constitutes a novel approach in modifying acutely the lipid composition of organelles), regardless of whether the membrane lipid composition of the liposomes was similar or very different from that of the endosomes. Similarly, Rab depletion from the endosome membranes left the domain structure unaffected. Furthermore, labeled exogenous protein, introduced into endosomes by liposome fusion, equilibrated with the corresponding microdomains. We conclude that synaptic membrane proteins are organized in stable but dynamic clusters within endosomes, which are likely to persist during membrane recycling. Microsc. Res. Tech. 73:606-617, 2010. (C) 2009 Wiley-Liss, Inc."],["dc.identifier.doi","10.1002/jemt.20800"],["dc.identifier.gro","3142915"],["dc.identifier.isi","000278641200004"],["dc.identifier.pmid","19937745"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/372"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley-liss"],["dc.relation.issn","1059-910X"],["dc.title","Synaptic Membrane Proteins Form Stable Microdomains in Early Endosomes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","246"],["dc.bibliographiccitation.issue","5873"],["dc.bibliographiccitation.journal","Science"],["dc.bibliographiccitation.lastpage","249"],["dc.bibliographiccitation.volume","320"],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Lauterbach, Marcel A."],["dc.contributor.author","Kamin, Dirk"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:48:45Z"],["dc.date.available","2017-09-07T11:48:45Z"],["dc.date.issued","2008"],["dc.description.abstract","We present video-rate (28 frames per second) far-field optical imaging with a focal spot size of 62 nanometers in living cells. Fluorescently labeled synaptic vesicles inside the axons of cultured neurons were recorded with stimulated emission depletion (STED) microscopy in a 2.5-micrometer by 1.8-micrometer field of view. By reducing the cross-sectional area of the focal spot by about a factor of 18 below the diffraction limit (260 nanometers), STED allowed us to map and describe the vesicle mobility within the highly confined space of synaptic boutons. Although restricted within boutons, the vesicle movement was substantially faster in nonbouton areas, consistent with the observation that a sizable vesicle pool continuously transits through the axons. Our study demonstrates the emerging ability of optical microscopy to investigate intracellular physiological processes on the nanoscale in real time."],["dc.identifier.doi","10.1126/science.1154228"],["dc.identifier.gro","3143316"],["dc.identifier.isi","000254836700048"],["dc.identifier.pmid","18292304"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/817"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0036-8075"],["dc.title","Video-rate far-field optical nanoscopy dissects synaptic vesicle movement"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2007Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","L67"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","L69"],["dc.bibliographiccitation.volume","92"],["dc.contributor.author","Donnert, Gerald"],["dc.contributor.author","Keller, Jan"],["dc.contributor.author","Wurm, Christian Andreas"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Westphal, Volker"],["dc.contributor.author","Schoenle, Andreas"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:49:49Z"],["dc.date.available","2017-09-07T11:49:49Z"],["dc.date.issued","2007"],["dc.description.abstract","We demonstrate two-color fluorescence microscopy with nanoscale spatial resolution by applying stimulated emission depletion on fluorophores differing in their absorption and emission spectra. Green- and red-emitting fluorophores are selectively excited and quenched using dedicated beam pairs. The stimulated emission depletion beams deliver a lateral resolution of < 30 nm and 65 nm for the green and the red color channel, respectively. The similar to 5 nm alignment accuracy of the two images establishes the precision with which differently labeled proteins are correlated in space. Colocalized nanoscopy is demonstrated with endosomal protein patterns and by resolving nanoclusters of a mitochondrial outer membrane protein, Tom20, in relation with the F(1)F(0)ATP synthase. The joint improvement of resolution and colocalization demonstrates the emerging potential of far-field fluorescence nanoscopy to study the spatial organization of macromolecules in cells."],["dc.identifier.doi","10.1529/biophysj.107.104497"],["dc.identifier.gro","3143514"],["dc.identifier.isi","000245164000003"],["dc.identifier.pmid","17307826"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1037"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0006-3495"],["dc.title","Two-color far-field fluorescence nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2007Review
    [["dc.bibliographiccitation.firstpage","1137"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","1144"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:49:25Z"],["dc.date.available","2017-09-07T11:49:25Z"],["dc.date.issued","2007"],["dc.description.abstract","Two models of synaptic vesicle recycling have been intensely debated for decades: kiss-and-run, in which the vesicle opens and closes transiently, presumably through a small fusion pore, and full fusion, in which the vesicle collapses into the plasma membrane and is retrieved by clathrin-coat-dependent processes. Conceptually, it seems that kiss-and-run would be faster and would retrieve vesicles with greater fidelity. Is this the case? This review discusses recent evidence for both models. We conclude that both mechanisms allow for high fidelity of vesicle recycling. Also, the presence in the plasma membrane of a depot of previously fused vesicles that are already interacting with the endocytotic machinery (the 'readily retrievable' vesicles) allows full fusion to trigger quite fast endocytosis, further blurring the efficiency differences between the two models."],["dc.identifier.doi","10.1111/j.1600-0854.2007.00614.x"],["dc.identifier.gro","3143448"],["dc.identifier.isi","000249248600004"],["dc.identifier.pmid","17645434"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/963"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Blackwell Publishing"],["dc.relation.issn","1398-9219"],["dc.title","Kiss-and-run, collapse and 'Readily Retrievable' vesicles"],["dc.type","review"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","5327"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Molecular Biology of the Cell"],["dc.bibliographiccitation.lastpage","5337"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Geumann, Ulf"],["dc.contributor.author","Barysch, Sina Victoria"],["dc.contributor.author","Hoopmann , Peer"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Rizzoli, Silvio"],["dc.date.accessioned","2017-09-07T11:48:08Z"],["dc.date.available","2017-09-07T11:48:08Z"],["dc.date.issued","2008"],["dc.description.abstract","Docking and fusion of transport vesicles constitute elementary steps in intracellular membrane traffic. While docking is thought to be initiated by Rab-effector complexes, fusion is mediated by SNARE (N-ethylmaleimide-sensitive factor [NSF] attachment receptor) proteins. However, it has been recently debated whether SNAREs also play a role in the establishment or maintenance of a stably docked state. To address this question, we have investigated the SNARE dependence of docking and fusion of early endosomes, one of the central sorting compartments in the endocytic pathway. A new, fluorescence-based in vitro assay was developed, which allowed us to investigate fusion and docking in parallel. Similar to homotypic fusion, docking of early endosomes is dependent on the presence of ATP and requires physiological temperatures. Unlike fusion, docking is insensitive to the perturbation of SNARE function by means of soluble SNARE motifs, SNARE-specific F(ab) fragments, or by a block of NSF activity. In contrast, as expected, docking is strongly reduced by interfering with the synthesis of phosphatidyl inositol (PI)-3 phosphate, with the function of Rab-GTPases, as well as with early endosomal autoantigen 1 (EEA1), an essential tethering factor. We conclude that docking of early endosomes is independent of SNARE function."],["dc.identifier.doi","10.1091/mbc.E08-05-0457"],["dc.identifier.gro","3143203"],["dc.identifier.isi","000261244700026"],["dc.identifier.pmid","18843044"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/692"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Amer Soc Cell Biology"],["dc.relation.issn","1059-1524"],["dc.title","SNARE Function Is Not Involved in Early Endosome Docking"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","13441"],["dc.bibliographiccitation.issue","40"],["dc.bibliographiccitation.journal","The Journal of neuroscience"],["dc.bibliographiccitation.lastpage","13453"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Pavlos, Nathan J."],["dc.contributor.author","Gronborg, Mads"],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Chua, John Jia En"],["dc.contributor.author","Boyken, Janina"],["dc.contributor.author","Kloepper, Tobias H."],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:45:15Z"],["dc.date.available","2017-09-07T11:45:15Z"],["dc.date.issued","2010"],["dc.description.abstract","Rab GTPases are molecular switches that orchestrate protein complexes before membrane fusion reactions. In synapses, Rab3 and Rab5 proteins have been implicated in the exo-endocytic cycling of synaptic vesicles (SVs), but an involvement of additional Rabs cannot be excluded. Here, combining high-resolution mass spectrometry and chemical labeling (iTRAQ) together with quantitative immunoblotting and fluorescence microscopy, we have determined the exocytotic (Rab3a, Rab3b, Rab3c, and Rab27b) and endocytic (Rab4b, Rab5a/b, Rab10, Rab11b, and Rab14) Rab machinery of SVs. Analysis of two closely related proteins, Rab3a and Rab27b, revealed colocalization in synaptic nerve terminals, where they reside on distinct but overlapping SV pools. Moreover, whereas Rab3a readily dissociates from SVs during Ca2+-triggered exocytosis, and is susceptible to membrane extraction by Rab-GDI, Rab27b persists on SV membranes upon stimulation and is resistant to GDI-coupled Rab retrieval. Finally, we demonstrate that selective modulation of the GTP/GDP switch mechanism of Rab27b impairs SV recycling, suggesting that Rab27b, probably in concert with Rab3s, is involved in SV exocytosis."],["dc.identifier.doi","10.1523/JNEUROSCI.0907-10.2010"],["dc.identifier.gro","3142843"],["dc.identifier.isi","000282571000024"],["dc.identifier.pmid","20926670"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/292"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Soc Neuroscience"],["dc.relation.issn","0270-6474"],["dc.title","Quantitative Analysis of Synaptic Vesicle Rabs Uncovers Distinct Yet Overlapping Roles for Rab3a and Rab27b in Ca2+-Triggered Exocytosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2006Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1163"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","1176"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Bethani, Ioanna"],["dc.contributor.author","Zwilling, Daniel"],["dc.contributor.author","Wenzel, Dirk"],["dc.contributor.author","Siddiqui, Tabrez J."],["dc.contributor.author","Brandhorst, Dorothea"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:52:37Z"],["dc.date.available","2017-09-07T11:52:37Z"],["dc.date.issued","2006"],["dc.description.abstract","Early endosomes are well-established acceptor compartments of endocytic vesicles in many cell types. Little evidence of their existence or function has been obtained in synapses, and it is generally believed that synaptic vesicles recycle without passing through an endosomal intermediate. We show here that the early endosomal SNARE proteins are enriched in synaptic vesicles. To investigate their function in the synapse, we isolated synaptic nerve terminals (synaptosomes), stimulated them in presence of different fluorescent markers to label the recycling vesicles and used these vesicles in in vitro fusion assays. The recently endocytosed vesicles underwent homotypic fusion. They also fused with endosomes from PC12 and BHK cells. The fusion process was dependent upon NSF activity. Moreover, fusion was dependent upon the early endosomal SNAREs but not upon the SNAREs involved in exocytosis. Our results thus show that at least a fraction of the vesicles endocytosed during synaptic activity are capable of fusing with early endosomes and lend support to an involvement of endosomal intermediates during recycling of synaptic vesicles."],["dc.identifier.doi","10.1111/j.1600-0854.2006.00466.x"],["dc.identifier.gro","3143642"],["dc.identifier.isi","000239695100004"],["dc.identifier.pmid","17004320"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1178"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Blackwell Publishing"],["dc.relation.issn","1398-9219"],["dc.title","Evidence for early endosome-like fusion of recently endocytosed synaptic vesicles"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2009Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1543"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Traffic"],["dc.bibliographiccitation.lastpage","1559"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Bethani, Ioanna"],["dc.contributor.author","Werner, Achim"],["dc.contributor.author","Kadian, Chandini"],["dc.contributor.author","Geumann, Ulf"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Rizzoli, Silvio"],["dc.date.accessioned","2017-09-07T11:46:49Z"],["dc.date.available","2017-09-07T11:46:49Z"],["dc.date.issued","2009"],["dc.description.abstract","SNARE proteins mediate membrane fusion in the secretory pathway of eukaryotic cells. Genetic deletion and siRNA-based knockdown have been instrumental in assigning given SNAREs to defined intracellular transport steps. However, SNARE depletion occasionally results in barely detectable phenotypes. To understand how cells cope with SNARE loss, we have knocked down several SNAREs functioning in early endosome fusion. Surprisingly, knockdown of syntaxin 13, syntaxin 6 and vti1a, alone or in combinations, did not result in measurable changes of endosomal trafficking or fusion. We found that the residual SNARE levels (typically similar to 10%) were sufficient for a substantial amount of SNARE-SNARE interactions. Conversely, in wild-type cells, most SNARE molecules were concentrated in clusters, constituting a spare pool not readily available for interactions. Additionally, the knockdown organelles exhibited enhanced docking. We conclude that SNAREs are expressed at much higher levels than needed for maintenance of organelle fusion, and that loss of SNAREs is compensated for by the co-regulation of the docking machinery."],["dc.identifier.doi","10.1111/j.1600-0854.2009.00959.x"],["dc.identifier.gro","3143052"],["dc.identifier.isi","000269732500014"],["dc.identifier.pmid","19624487"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/523"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley-blackwell Publishing, Inc"],["dc.relation.issn","1398-9219"],["dc.title","Endosomal Fusion upon SNARE Knockdown is Maintained by Residual SNARE Activity and Enhanced Docking"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","644"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Microscopy Research and Technique"],["dc.bibliographiccitation.lastpage","650"],["dc.bibliographiccitation.volume","71"],["dc.contributor.author","Punge, Annedore"],["dc.contributor.author","Rizzoli, Silvio"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Wildanger, Jan Dominik"],["dc.contributor.author","Meyer, Lars"],["dc.contributor.author","Schönle, Andreas"],["dc.contributor.author","Kastrup, Lars"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:48:14Z"],["dc.date.available","2017-09-07T11:48:14Z"],["dc.date.issued","2008"],["dc.description.abstract","Tackling biological problems often involves the imaging and localization of cellular structures on the nanometer scale. Although optical super-resolution below 100 nm can be readily attained with stimulated emission depletion (STED) and photoswitching microscopy methods, attaining an axial resolution <100 nm with focused light generally required the use of two lenses in a 4Pi configuration or exceptionally bright photochromic fluorophores. Here, we describe a simple technical solution for 3D nanoscopy of fixed samples: biological specimens are fluorescently labeled, embedded in a polymer resin, cut into thin sections, and then imaged via STED microscopy with nanoscale resolution. This approach allows a 3D image reconstruction with a resolution <80 nm in all directions using available state-of-the art STED microscopes."],["dc.identifier.doi","10.1002/jemt.20602"],["dc.identifier.gro","3143247"],["dc.identifier.isi","000259533900003"],["dc.identifier.pmid","18512740"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/740"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Human Frontier Science Program"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1059-910X"],["dc.title","3D reconstruction of high-resolution STED microscope images"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS